六方晶 TbFeO₃薄膜のスピン・電荷における反フェローフェロ相転移

Antiferroic-to-ferroic phase transitions in spin and charge of hexagonal TbFeO₃ film Liu Yaoming¹, Chen Binjie¹, 太田 裕道², 片山 司^{2,3}

北大情報科学院¹,北大電子科学研究所², JST さきがけ³

(¹IST- & ²RIES-Hokkaido Univ., ³JST-PRESTO) °Y. Liu¹, B. Chen¹, H. Ohta², T. Katayama^{2,3} E-mail: lym@eis.hokudai.ac.jp

[Introduction] Rare-earth iron oxides (*R*FeO₃) are known as multiferroic materials. In contrast to the most stable orthorhombic (*o*-) perovskite structure, showing the ferroelectricity only below a few K, metastable hexagonal (*h*-) *R*FeO₃ shows spontaneous ferroelectric polarization even at room temperature [1]. The ferroelectric and magnetic properties of *h*-*R*FeO₃ highly depend on the ionic radius of R^{3+} . Ferroelectric properties of *h*-*R*FeO₃ with $R^{3+} = Dy^{3+}-Lu^{3+}$ have been studied thus far. In this study, we studied multiferroic properties of *h*-TbFeO₃ film, in order to clarify the effect of smaller R^{3+} than that of $Dy^{3+}-Lu^{3+}$.

[Experiment] *h*-TbFeO₃ films were fabricated on epitaxial ITO-buffered (111) YSZ single crystal substrates by PLD method. Out-of-plane magnetization was measured by superconducting quantum interference device (SQUID) magnetometer. Permittivity was measured by LCR meter. Ferroelectric properties were analyzed by the ferroelectric tester.

[Results and discussion] Figure (a) shows polarization versus electric field (P-E) curves of the *h*-TbFeO₃ film. It exhibited antiferroelectricity at 200 K and ferroelectricity at 175 K. Such antiferroelectric behavior was also observed in *h*-DyFeO₃ film. Thus, a use of small R^{3+} ions is effective to obtain antiferroelectric phase in *h*-*R*FeO₃ system. Figure (b) shows the magnetization versus temperature (M-T) curve. It has positive and negative peaks at 30 and 10 K, respectively, indicating that temperature-induced phase transition occurs associated with the spin reorientation [1]. The inset of Fig. (b) shows *M* of the film as a function of magnetic field (*H*). At 10 K, double hysteresis loop was observed, indicating that antiferromagnetic to ferromagnetic transition is also realized by applying different *H*.

Figure (a) Polarization versus electric field curves of the *h*-TbFeO₃ film at 175 and 200 K. (b) The magnetization versus temperature curve. The inset shows magnetization versus magnetic field curves. <Reference> [1] M. Li *et al.*, *Phys. Chem. Chem. Phys.*, 22, 14415 (2020).