Reduction of I_d - V_g hysteresis in SiO₂/MoS₂ n-FET by insertion of h-BN interfacial layer

Jiaquan Feng¹, Tianshun Xie¹, Nobuyuki Aoki¹, and Mengnan Ke¹ (1. Chiba University, Graduate School of Science and Engineering) E-mail: mke@chiba-u.jp

1. Introduction Molybdenum disulfide (MoS₂) has become more and more attracting as a next generation two-dimensional (2D) MOSFET channel material because of the suitable bandgap of ~1.1-2 eV for CMOS, and possible suppresses the short channel effect than silicon [1]. However, the reliability issues have not been studied clearly. Recently, annealing can effectively impact the interface properties and reduce the density of border trap which have been reported [2]. On the other hand, the reduction in $I_{\rm d}$ - $V_{\rm g}$ hysteresis is still strongly needed. Hexagonal boron nitride (h-BN) has attracted widespread attention due to its special capabilities such as electric insulation and chemical stability^[3]. In this study, in order to reduce the $I_{\rm d}$ - $V_{\rm g}$ hysteresis, we investigate the effect of inserting h-BN interfacial layer in MoS2 n-FET with MoS2/SiO2/p++ Si gate stacks.

2. Experiment Process flow and device structure are shown in Fig.1. Firstly, we cleaned the 300-nm-thick SiO_2 -coated p⁺⁺-Si substrates by 20 min sonic and 30 sec O_2 plasma. After pre-cleaning, h-BN crystals were exfoliated with a tape on the SiO_2/p^{++} -Si substrates. Then we placed the MoS₂ crystals exfoliated with a blue tape on h-BN/SiO₂/p⁺⁺-Si substrates via a dry transfer process by using polycarbonate film at 180°C. 10-nm-thick Ti and 40-nm-thick Au electrodes were fabricated using electron beam lithography and electron beam metal deposition, followed by 1.5 h annealing in vacuum at 250°C.

3. Results and Discussion Fig.2 shows the I_d - V_g characteristics in 300-nm-thick SiO2/MoS2 n-FET w/ and w/o annealing. It is observed that improvement to hysteresis of $I_{\rm d}$ - $V_{\rm g}$ curves by annealing, and the hysteresis is reduced from 59 to 17 V. Next, $I_{\rm d}$ - $V_{\rm g}$ characteristics in 300-nm-thick SiO₂/tri-layer MoS₂ n-FET with varied minimum gate voltage from -40 V to -10 V are shown in Fig.3. The repeated scan with different minimum gate voltage leading to a changed Id-Vg hysteresis. Where minimum gate voltage is decreased down to -20 V, forward I_d - V_g starts to shift toward negative voltage. In Fig.4, we compare $I_{\rm d}$ - $V_{\rm g}$ characteristics in 300-nm-thick SiO2/MoS2 n-FET w/ and w/o insertion of h-BN interfacial layer. It is observed that hysteresis is significantly reduced from 17 to 4 V, proving the effectiveness of inserting h-BN interfacial layer to decrease hysteresis of MoS2 n-FET. Finally, we summary the hysteresis of MoS₂ n-FETs in this work. After we induce annealing process and insertion h-BN interfacial layer, the hysteresis is reduced to 29% and 23%, respectively.

4. Conclusions We have investigated 300-nm-thick $SiO_2/(h-BN)/MoS_2$ n-FETs. And we have found the impact of annealing process and inserting h-BN interfacial layer on hysteresis reduction in SiO_2/MoS_2 n-FETs.

Reference

[1] W. Li, et al., Nature Electronics 2 (2019), 563-571.

[2] Z. Ping, et al., ACS Appl. Electron. Mater. 1 (2019), 1372-1377.

[3] M. J. Molaei, et al., ACS Appl. Electron. Mater. **3** (2021), 5165-5187.

Fig.1 Process flow and device structure of

Fig.2 I_d - V_g characteristics in 300-nm-thick SiO₂/MoS₂ n-FET w/ and w/o annealing.

Fig.4 I_d - V_g characteristics in 300-nm-thick SiO₂/MoS₂ n-FET w/ and w/o insertion of h-BN interfacial layer.

