CNT ネットワークの抵抗温度係数ゲート電圧依存性

Gate Voltage Dependence of Temperature Coefficient of Resistance

in Carbon Nanotube Networks

NEC¹, 産総研² ^O殿内規之^{1,2}, 福田紀香¹, 宮崎孝^{1,2}, 澁谷泰造^{1,2}, 田中朋^{1,2}, 弓削亮太^{1,2}
NEC¹, AIST² ^ON. Tonouchi^{1,2}, N. Fukuda¹, T. Miyazaki^{1,2}, T. Shibuya^{1,2}, T. Tanaka^{1,2} and R. Yuge^{1,2}
E-mail: n-tonouchi@nec.com

カーボンナノチューブ(CNT)は、炭素の六員環で作られたシートを直径数 nm 程度の円筒状に丸めた形状を持つ炭素同素体の一つである。 我々は、 CNT ネットワークの大きな抵抗温度係数 (Temperature Coefficient of Resistance: TCR)に着目し、非冷却型赤外ボロメータへの応用を目指している[$^{\text{II}}$]。 非冷却型ボロメータの検出能は抵抗体の TCR に線形に依存するため、感度向上には抵抗体の TCR 化が重要といえる。

今回、高 TCR 化への指針を得ることを目的に、半導体の TCR がキャリア密度に依存することに着目し、薄膜トランジスタ構造でゲート電圧により CNT ネットワークのキャリア密度を制御した状態で TCR の評価を行った。評価には、ボトムゲート-ボトムコンタクト構造を用いた。Fig.1 が電気特性評価結果と TCR 算出結果の一例である。黒丸(〇)が素子温度 298K、ドレイン電圧-100meV、ゲート電圧を-3V~8V まで掃引した際のドレイン電流値を示している。Normally-ON の特性を示しており、ゲート電圧 5~6V 付近で極小値(オフ状態)をとることが確認できる。青点(①)、赤点(④)、オレンジ点(④)は、別途、複数温度(298K, 303K, 308K, 313K)で I_d - V_d 測定を行い、算出した TCR 値である。正のゲート電圧を印加し、チャネルをオフ状態にすると、TCR が増大す

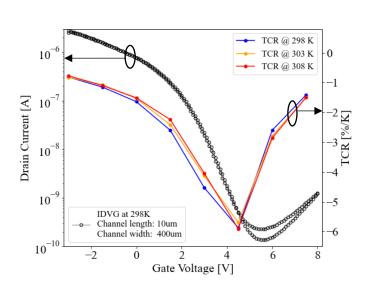


Figure 1. I_d-V_g curve and estimated TCR

ることが確認できる。本計測結果のメカニズムを把握するため、CNTの電子構造を考慮した伝導モデルを用いてシミュレーションを行った結果、フェルミ面がミッドギャップにある時にTCRが最大化するという、本計測結果と整合するシミュレーション結果が得られている。当日は、シミュレーション、実験結果の詳細を報告し、高TCR化に向けた開発指針について議論する予定である。

参考文献

[1] 田中朋他, 第 83 回応用物理学会秋季学術講演会, 22p-B203-16(2022) 本研究の一部は、防衛装備庁が実施する安全保障技術研究推進制度 JPJ004596 の支援を受けたも のである。