スパッタ法で作製した多結晶 BaSi₂ 膜への B イオン注入による伝導型制御 Control of conduction type by B implantation into polycrystalline BaSi₂ films prepared by sputtering

筑波大学¹,東ソー株式会社²

○佐藤 匠¹, 木戸 一輝¹, 長谷部 隼¹, 竹中 晴紀¹, 青貫 翔¹, 召田 雅実², 都甲 薫¹, 末益 崇¹ Univ. Tsukuba¹, Tosoh Corporation²

^oT. Sato¹, K. Kido¹, H. Hasebe¹, H. Takenaka¹, S. Aonuki¹, M. Mesuda², K. Toko¹, T. Suemasu¹,

E-mail: s2113596@s.tsukuba.ac.jp

【背景·目的】

本研究では新規薄膜太陽電池材料として BaSi₂に注目している。BaSi₂ は豊富な元素から構成され、大きな光吸収係数と優れた少数キャリア特性を併せ持つため、高効率な太陽電池の実現が期待されている[1]。先行研究では、Ba 及び BaSi₂ ターゲットを用いた同時スパッタ法によるB-doped p-BaSi₂ 膜の作製が検討された。しかし、As-grownでは膜中の酸素によりn型となり、熱処理することでp型となった[2]。そのため、スパッタ膜で連続的なホール密度制御は達成できていない。一方、MBE 法でエピタキシャル成長した BaSi₂膜では、成膜時のB供給と、成膜後のBのイオン注入の両方で、連続的なホール密度制御を達成している[3]。そこで本研究では、スパッタ法により作製した多結晶 undoped BaSi₂膜へBのイオン注入を試み、p-BaSi₂膜の作製を目指した。

【実験】

FZ-n-Si(111)基板(ρ > 1000 Ω cm)上にスパッタ法を用いて BaSi₂ 膜を 200 nm 堆積した。堆積時には基板温度を 600 °C、Ar ガス圧力を 0.5 Pa、BaSi₂ ターゲット(東ソー(株)製)の RF-Power を 70 W、Ba ターゲットの RF-Power を 40 W に設定した。BaSi₂ 膜の堆積後、酸化防止のため in situ で a-Si キャップ層を 3 nm 堆積した。その後、イオン注入装置により BF₃を用いて B をイオン注入した。イオン注入時の加速電圧は 20 keV、ドーズ量は 10^{14} cm⁻²に設定した。最後に、Ar 雰囲気下において 1000 °C のポストアニールを 1-15 分間の範囲で行った。試料の結晶性をラマン分光装置、電気特性をホール測定により評価した。

【結果·考察】

Fig. 1 にアニール時間(ta)を変調した各試料のラマンスペクトルを示す。全ての試料において Si 四面体由来の振動モードを検出し、BaSi2 が結晶化していることを確認した。また、アニール時間の増加に伴って Ag モードが低波数側へシフトした。本結果は B が Si に置換したことを示唆する。

Fig. 2 にキャリア密度と移動度のアニール時間依存性を示す。ポストアニールを施すことにより伝導型が p 型となった。これは高温処理によって膜中の O が Si 四面体から移動し、B が Si と置換したためと考えられる^[2]。また、アニール時間の変調によりホール密度が連続的に増加した。これはアニール時間の増加に伴い、B の活性化率が増加したためと考えられる。以上より、スパッタ法による連続的な伝導型制御を初実証した。

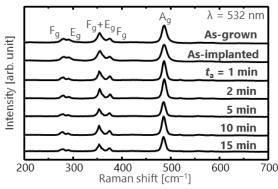


Fig. 1 Raman spectra of undoped as-grown BaSi₂ and B-implanted BaSi₂ films annealed at 1000 °C for different durations.

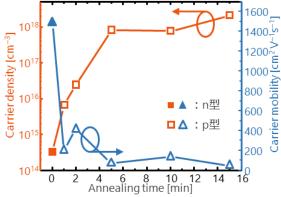


Fig. 2 Annealing duration dependences on hole concentration and mobility of B-implanted p-BaSi₂ films annealed at $1000~^{\circ}\text{C}$ for 0-15~min.

- [1] T. Suemasu and N. Usami, J. Phys. D $\mathbf{50}$, 023001 (2017).
- [2] H. Hasebe et al., Jpn. J. Appl. Phys. 62, SD1010 (2023).
- [3] S. Aonuki et al., Jpn. J. Appl. Phys. in press.