p-NiO/n-BaSi2 ヘテロ接合型太陽電池の設計およびガラス基板上への作製

Design of p-NiO/n-BaSi₂ heterojunction solar cells

and their fabrication on glass substrates

筑波大学¹,東ソー株式会社² [○]竹中晴紀¹,長谷部隼¹,木戸一輝¹,召田雅実²,都甲薫¹,末益崇¹ Univ. Tsukuba¹, Tosoh Corporation² [○]H. Takenaka¹, H. Hasebe¹, K. Kido¹, M. Mesuda², K. Toko¹, T. Suemasu¹

E-mail: <u>s2220271@s.tsukuba.ac.jp</u>

【背景・目的】 薄膜太陽電池の新規材料として BaSi2に 注目している。BaSi2は地殻中に豊富な元素から構成さ れる半導体でありながら、大きな光吸収係数(3×104 cm⁻¹ @1.5 eV)と優れた少数キャリア拡散長(10 μm)を 有する¹⁾。また、バンドギャップ(E。)が 1.3 eV と太陽電 池の理想値に近い¹⁾。先行研究では、Ba 及び BaSi₂タ ーゲットを用いた同時スパッタ法により、Ba/Si 組成比 を制御し、高品質な n-BaSi2 光吸収層の形成を達成し た²⁾。また、ガラス基板上でもSi基板上に匹敵する分光 感度を記録しており、実用化に向けた研究も進んでい る³⁾。今後、BaSi2太陽電池デバイスを作製する上では、 光吸収層で励起したキャリアを分離するホール輸送層 (HTL)が必要である。そこで本研究では、結晶 Si 太陽 電池での HTL として報告例のある NiO の導入を検討 した⁴⁾。始めに、堆積条件を変調した NiO の電子親和 力(gy)と E。の測定によりバンドアライメントを決定した ⁵⁾。続いて、p-NiO/n-BaSi₂ ヘテロ接合型太陽電池をガ ラス基板上に作製し、光学特性を調査した。

【実験】まず、NiOターゲットを用いて、ArとO2ガスを 導入した反応性スパッタ法によりSiO2基板上にNiO膜 を堆積した。この時、基板温度を室温から200°Cに変 調した。作製した試料に関して、紫外光電子分光法 (UPS)によりqxを、分光エリプソメトリによりEgをそれ ぞれ測定した。続いて、p-NiO/n-BaSi2 ヘテロ接合型太 陽電池を作製した。まず、SiO2基板上にスパッタ法によ りTiN 導電膜を堆積した。次に、BaSi2(東ソー(株)製)タ ーゲットと Ba ターゲットを用いた同時スパッタ法により、 BaSi2 膜を堆積した。この時、基板温度を600°C、BaSi2、

Fig. 1 Band alignment of NiO and BaSi₂

with respect to the vacuum level.⁵⁾

Ba ターゲットそれぞれの投入電力を 70 W, 50 W に設 定した。BaSi₂ 膜を堆積した後に、酸化防止のため a-Si キャップ層を 3 nm 堆積した。その上に、室温下で O₂を 2%導入した反応性スパッタ法により NiO を 200 nm 堆 積した。最後に、試料表面に直径 1 mm、厚さ 80 nm の ITO 電極を堆積した。

【結果・考察】 基板温度を変調した NiO と BaSi₂ それ ぞれのバンドアライメントを Fig. 1 に示す。基板温度の 上昇によって qx は減少し、E₂ は増加した。これは基板 温度の変調に伴い、NiO 結晶中に存在する Ni 空孔な どの欠陥密度の増減によって、バンド構造が変化したと 考えられる。一方、価電子帯トップの位置はほぼ変わら なかった。次に、作製した p-NiO/n-BaSi₂ ヘテロ接合型 太陽電池の(a)デバイス構造、(b)EQE スペクトルを Fig.2 に示す。EQE スペクトルが波長 900 nm 付近から 立ち上がっており、BaSi₂ 由来のキャリアを検出した。ま た、変換効率が小さいながら、ガラス基板上に作製した BaSi₂ 太陽電池において初めてデバイス動作を確認し た。今後は、堆積条件の検討により、光学特性の更なる 向上を目指す。

【参考文献】

1) T. Suemasu and N. Usami, J. Phys. D: Appl. Phys. 50, 023001 (2017).

- 2) K. Kido et al., Thin Solid Films, 758, 139426 (2022).
- 3) R. Koitabashi et al., J. Phys. D. 54, 135106 (2021).
- 4) M. Xue et al., J. Appl. Phys. 123, 143101 (2018).
- 5) H. Takenaka et al., Jpn. J. Appl. Phys. 62, SD1011 (2023).

