Investigation of acid deprotonation in electrolyte thin film through protonic field-effect transistor

JAIST¹, Yamagata Univ.², ^oAthchaya Suwansoontorn¹, Kentaro Aoki¹, Jun Matsui², Yuki Nagao¹ E-mail: athchaya@jaist.ac.jp

The protonic field-effect transistor (H⁺-FET) with electrochemical impedance spectroscopy (EIS) measurement was established to investigate the proton (H⁺) transport properties of electrolyte thin film containing a carboxylic acid group. The external gate voltage (V_g) applied to the H⁺-FET device can modulate the flow of the H⁺ charge carrier in electrolyte thin film, and then the H⁺ transport properties can be extracted.¹⁻³ However, the palladium (Pd) electrode reaction under an H₂ atmosphere with a DC system, which can provide the excess H⁺ carrier, was used in the reported H⁺-FETs.^{1,2} Pd electrode reaction and strong contact resistance of a DC system were expected to interrupt the investigation of the thin film properties. In this work, a gold (Au) electrode combined with EIS measurement under air atmosphere was performed. This established method can provide intrinsic information on the H⁺ transport properties of electrolyte thin film, including the amount of H⁺ charge carrier or carboxylic acid deprotonation behavior without the electrode reaction and contact resistance effects.

Polyacrylic acid (PAA) thin film (45 nm) was studied using our H⁺-FET, which consists of comb-shaped Au electrodes deposited on a Si/SiO₂ substrate. V_g from -5 V to +5 V was applied, and the V_g dependence of in-plane H⁺ conductivity (σ) was observed (Fig. 1a). The H⁺ transport mobility (μ_{H+}) of 8×10^{-4} cm² V⁻¹ s⁻¹ was successfully estimated. The mobile H⁺ concentration (n'_{H+}) was calculated from μ_{H+} , showing the dependence on V_g . The change of H⁺ carrier concentration depending on V_g might refer to the difference in carboxylic acid deprotonation behavior. Therefore, the effective p K_a (p K_a ') was then estimated and displayed in Fig. 1b. Furthermore, the influence of V_g on the electrolyte thin film Debye length (κ^{-1}) would be discussed.

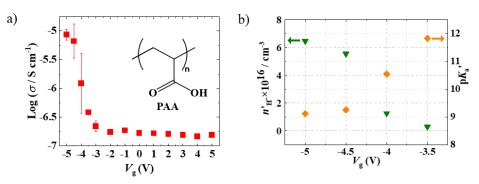


Figure 1 The V_g dependence of PAA thin film's a) σ , and b) n'_{H^+} and pK_a' .

References; 1) C. Zhong *et al., Nat. Commun.* 2011, *2*, 476. 2) H. Zhong *et al., Adv. Mater.* 2020, *32*, 2000730.
3) S. Mondal *et al., Small* 2020, *16*, 2005526.