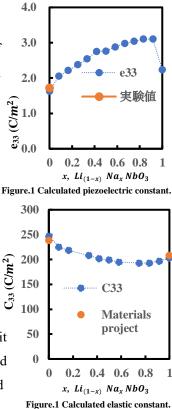
Evaluate the piezoelectric properties of Li_{1-x}Na_xNbO₃ by first-principles calculation

National Institute of Advanced Industrial Science and Technology¹, Kyushu University², Feng Guan,^{1,2} Kenji Hirata,¹ Chao-Nan Xu^{1,2}

E-mail: <u>cn-xu@aist.go.jp</u>

Introduction


In recent years, our laboratory has reported the piezoelectric LiNbO₃ provides a multi-piezo material that combines mechanoluminescence (ML) properties and piezoelectric properties by doping $Pr^{3+ [1]}$. The piezoelectricity properties of LiNbO₃: Pr^{3+} changing with the addition of Na has been reported and it also shows a strong relationship between ML intensity and piezoelectricity ^[2]. To study the relationship between its piezoelectricity and ML, the evaluation of its piezoelectricity is essential. However, without the addition of Pr^{3+} , the piezoelectricity-related data of $Li_{1-x}Na_xNbO_3$ are still insufficient. In this this study the first-principles calculation was used to investigate the piezoelectricity of $Li_{1-x}Na_xNbO_3$.

Calculation Method

The Vienna Ab Initio Simulation Package (VASP)was used to calculate the changes of physical properties with the amount of sodium increase. The supercell of $Li_{1-x}Na_xNbO_3$ was made by special quasirandom structure method. Density Functional Perturbation Theory method and Frozen Phonon method was used to calculate the piezoelectric stress constant(e_{33}) and elastic constant(C_{33}). The piezoelectric constant(d_{33}) was calculated by using e_{33} and C_{33} .

Results And Discussion

Figures 1 and 2 show the calculated results of the elastic constant C_{33} and the piezoelectric stress constant e_{33} with respect to the amount of Na added in $Li_{1-x}Na_xNbO_3$. As the addition of Na increases, e_{33} increases first and then decreases and reaching the maximum when Na=0.9, C_{33} decreases gradually. By compared the calculated value and experiment value of e_{33} and C_{33} at LiNbO₃, it is confirmed that the calculated results have high reliability. Calculated d_{33} value, it increases first and then decreases with Na increase, and the trend is consistent with the experiment.

References

[1] D. Tu, etc. Adv Mater, 29.22 (2017). [2] H. Hara, etc. Soc. J., 128,518-522 (2020).