欠陥複合体を利用した強誘電体設計

Ferroelectric design utilizing defect dipoles 熊本大学¹ ^O野口祐二¹,松尾拓紀¹ Kumamoto Univ.¹, °Yuji Noguchi¹, Hiroki Matsuo¹, E-mail: ynoguchi@cs.kumamoto-u.ac.jp

A self-powered system with a long lifetime offers an opportunity to develop a nextgeneration, standalone Internet of Things. Ceramic capacitors are promising candidates for energy storage components because of their stability and fast charge/discharge capability. Even for state-of-the-art capacitors, the energy density needs to be increased markedly. Improving breakdown electric fields provides a potential solution, but operations at such high fields relying on unchanged dielectric permittivity sacrifice the lifetime to some degree. Here, we report a ferrorestorable polarization engineering capable of enhancing effective permittivity over twice. Our experiments and *ab initio* calculations demonstrate that a defect dipole composed of 3d transition metal acceptors such as Cu³⁺ and oxygen vacancy in a prototypical ferroelectric BaTiO₃ ceramic is coupled with spontaneous polarization¹⁾. The resultant ferrorestorable polarization delivers an extraordinarily large effective relative permittivity beyond 7,000 with a high energy efficiency up to 89 %²⁾. Our work paves the way to realizing efficient ceramic capacitors for self-powered applications.

Fig. 1 | Ferrorestorable polarization²). a, Typical *P*-*E* loop of ferroelectrics (pristine). b, Shifted *P*-*E* loop with an internal electric field (*E*_i) caused by the ground-state configuration of $\mu_{def} \parallel \mathbf{P}_s$ (controlled). The controlled sample has a large U_{rec} as a result of ΔP , which is termed ferrorestorable polarization. The interaction between μ_{def} and \mathbf{P}_s stabilizes the downwards polarization (*P*_{down}) at zero field, i.e., $P_0 = P_{down}$, because the *P*-*E* loop shifts to a positive field by the magnitude of E_i . E_i is defined as the average of E_{c+} and E_{c-} , that is, $E_i = (E_{c+} + E_{c-})/2$, where E_{c+} and E_{c-} are the electric fields at the extreme polarization switching currents in the positive and negative field sweeps, respectively.

- 1) Y. Noguchi, Y. Taniguchi, R. Inoue and M. Miyayama, Nat. Commun. 11, 966 (2020).
- Hiroki Matsuo, Masashi Utsunomiya, and Yuji Noguchi, NPG Asia Materials, 14, 80 (2022).