Silver Bismuth Iodide Rudorffite for Photocatalytic CO₂ Reduction Chang Gung Univ.¹, Chang Gung Memorial Hospital at Linkou² ^oJia-Mao Chang¹, Ting-Han Lin¹, Yin-Hsuan Chang¹, Ming-Chung Wu^{1,2*} E-mail: mingchungwu@cgu.edu.tw

Photocatalytic CO₂ reduction is considered a promising strategy to resolve the global warming effect. Reducing CO₂ through photocatalytic systems can convert CO₂ into carbon-based fuels, such as carbon monoxide, formic acid, methanol, methane, etc. Many photocatalysts, such as including nitrides, sulfides, phosphides, and metal oxides, have been developed for photocatalytic CO₂ reduction. However, a wide band gap and a short lifetime of photoinduced charges are the most common drawbacks leading to poor CO_2 conversion efficiency. In this study, we developed a series of silver bismuth iodide (SBI) rudorffites, which are thought of as a next-generation photovoltaic material. A series of SBI rudorffites, including AgBi₂I₇, AgBiI₄, Ag₂BiI₅, and Ag₃BiI₆, can be obtained by manipulating the stoichiometric ratio of silver iodide (AgI) and bismuth iodide (BiI₃), and they exhibit high visible absorption ability, tunable bandgap, and suitable alignment of energy levels. The crystalline structure analysis shows that the silver-rich components exhibit hexagonal lattice structures, whereas the bismuth-rich component forms a cubic lattice structure. The crystal structure of SBI changed at a ratio of AgI/BiI₃ equal to 1.0. On the other hand, a portion of Ag^+ will be transformed to Ag^{2+} by the interaction between Bi atoms, and the valence change can be confirmed by X-ray absorption spectroscopy. The photo-assisted Kelvin probe force microscopy was used to reveal the assessment of surface charge accumulation after irradiation as SBI are struck by different light sources with different wavelengths. Finally, Ag₃BiI₆ exhibits the highest photocatalytic activity and can convert CO₂ to CO or CH₄. The averaged CO and CH₄ production rates can achieve 0.23 and 0.10 μ mol/g/h, respectively. Ag₃BiI₆ shows excellent potential as a novel photocatalysis for CO₂ reduction, and it also sheds light on the possibility of solving environmental contamination and sustainable energy crises.

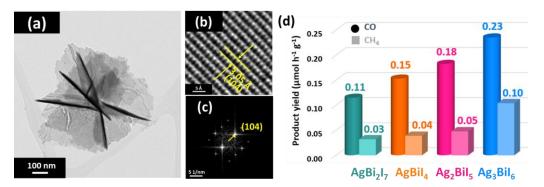


Fig 1. (a) TEM microstructure image, (b) high resolution TEM microstructure image, and (c) the diffraction pattern of Ag_3BiI_6 . (d) Photocatalytic CO_2 reduction performance of a series of SBI rudorffites $(Ag_aBi_bI_{a+3b})$ under simulated solar light irradiation.