Optical properties of MgO implanted with Ce and Li with different annealing conditions ^O(B)Manato Kawahara^{1,2}, (M1)Yuichiro Abe^{1,3}, Shun Kanai^{1,3-7}, Jun Ishihara⁸, (B)Yusuke Aoki⁸, Makoto Kohda^{3,5}, Shunsuke Fukami^{1,3,6,7,9,10}, and Hideo Ohno^{1,6,7,9}

¹Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ., ²School of Engineering,

Tohoku Univ., ³Graduate School of Engineering, Tohoku Univ., ⁴JST PRESTO, ⁵DEFS, Tohoku

Univ., ⁶CSIS, Tohoku Univ., ⁷WPI-AIMR, Tohoku Univ., ⁸Department of Applied Physics, Tokyo

Univ. of Science, ⁹CIES, Tohoku Univ., ¹⁰InaRIS

E-mail: manato.kawahara.p1@dc.tohoku.ac.jp

Defect centers in diamond [1] and in SiC [2] are the most established spin centers as optically accessible solid-state qubits. To develop other widegap host materials with new qubit functionalities [3], based on theoretical predictions of qubit host materials with long coherence times [3,4], here we investigate the optical properties of isolated color centers with Ce- and Li-implanted MgO.

We prepare several series of MgO substrates with different implantation conditions: Series A with Ce implantation and Series B with subsequent Li and Ce implantations. The implantation power and dose of Ce (Li) are 100 keV (13 keV) and 1.0×10¹⁴ atoms/cm² (3.0×10¹⁴ atoms/cm²), respectively. Species are implanted at room temperature in air, and then, the substrates are annealed at $T_a = 600-1000^{\circ}$ C in Ar atmosphere for 2 hours. In oxides, possible states of the Ce atom are Ce³⁺, Ce²⁺, and Ce-Ce clusters, in which only Ce³⁺ center shows bright fluorescence [5]. Figure 1 shows the typical photoluminescence (PL) spectroscopy signal of the samples with $T_a = 800^{\circ}$ C measured by a spectrometer with excitation wavelength at 450 nm and power with 1 mW. In Series A (B), the samples with $T_a \le 800^{\circ}$ C ($\le 900^{\circ}$ C) show clear peaks at around 480 nm and 520 nm corresponding to the optical transitions of Ce³⁺[5]. At $T_a \ge 600^{\circ}$ C, the signal of Series B is larger than that of Series A, which is due to the increase of Ce^{3+}/Ce^{2+} ratio in Series B with the charge state compensation

by Li^+ ion. Further increase of the T_a annihilates the peaks, which is most probably due to the formation of the Ce-Ce clusters [6].

This work was supported in part by Shimadzu Research Foundation; Takano Research Foundation; RIEC Cooperative Research Projects; JSPS Kakenhi Nos. 19KK0130 and 20H02178; and JST-PRESTO No. JPMJPR21B2.

Figure 1 Photoluminescence spectrum of Ce implanted MgO annealed at 800°C with different implantation conditions.

[1] P. Neumann et al., Science 320, 5881 (2008). [2] W. F. Kohel et al., Nature 479, 84 (2011). [3] G. Wolfowicz et al., Nat. Rev. Mat. 6, 906 (2021). [4] S. Kanai et al., Proc. Natl. Acad. Sci. 119, e2121808119 (2022). [5] L. Oliveira et al., Scientific Reports 6, 24348 (2016). [6] J. Weimmerskirch et al., J. Alloys Compd. 622, 358 (2015).

© 2023年 応用物理学会