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Understandings of the kinetics of N-incorporation and N-removal reactions for the 4H-SiC
surface using the SiC consumption rate as an essential factor
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[Motivation] To maximize the SiC surface N density which still has plenty of room to improve, it is inevitable to
understand the SiC surface nitridation kinetics. We have proposed a kinetic model shown by Eq. (1), by simplifying
the N-incorporation rate (&V,) and rate constant of N-removal (k) to be independent of the nitridation time (¢) [1],

An(0) =" (1-e™) @)

where Ay(?) is the surface N density. The saturated Ay (¢) would be determined by N,/k. In this study, we will
investigate the essential factors to determine N,/k by decomposing it into £ and N, for 4H-SiC/SiO: structure.
[Experimental] 4°-off 4H-SiC(0001) substrates with epitaxial layers (Np ~ 1x10'° c¢m™) were oxidized in O to
grow SiO2 with the thickness (Tx) varying from 6 to 30 nm. Nitridation was performed by annealing in N2, N2/Oz
or N2/Hz ambient with various Oz partial pressures (Pg). Change of SiOz thickness (AT(x) during the annealing
was determined by grazing incident x-ray reflectivity. After removing the SiO: layer in diluted HF, the relative
ratio of N (NV/Si) was estimated with the peak area ratio of N1s to Si2p core-level XPS as the indicator for Ay /(7).
[Results and discussions] Fig. 1 shows a typical ¢ dependence of N/Si. The initial nitridation rate (N, see Fig.
1) was defined experimentally as the indicator for N, [1], and & was obtained by fitting the curve calculated
using Eq. (1) with N” to the experimental data, where Ay (f) was replaced by N/Si. Verification of Eq. (1) was
reported in the previous work [1] for the case where only the passive oxidation rate was taken into account as the
factor to determine k. In this study we expand the cases to the active/passive mixed oxidations where the SiC
consumption rate (Rg;c) should be considered to include both active and passive oxidations. Note that Rg;c could
be expressed by two experimental parameters: passive oxidation rate and the ratio between active and passive
oxidation rates (active-to-passive ratio). Fig. 2 shows the relationships between & and the linear SiO2 growth rate
(R"™), which was obtained from the linear ATy~ relationship (data not shown) as the indicator for the passive
oxidation rate. Linear relationships between k& and R'™ were found irrespective of 7" and Ty, while the slope
strongly depends on Pg. This could be explained that the active-to-passive ratio is sensitively affected by Pg
regardless of a small variation of 7, considering the reported Py-dependence of the passive/active transition [2].
Thus, & is suggested to be proportional to Rg;-. Regarding N,, three processes are proposed, which are the
removal of topmost C atoms to generate vacant sites, the adsorption of oxidants and nitridation species to the
vacant sites. By considering Rg;c as the essential factor, it was proposed that N, should increase with Rg;c, and
saturate when Rg;c is sufficiently large [3]. Here we further proposed that when Rg;c is sufficiently small, N,
should be small and show little dependence on Rg;c, due to the limited reaction sites and the competition for those
sites between nitrogen and oxygen. Fig. 3 summarizes the relationship between N and k which was assumed
as the indicator for Rg;c. It was found that N”” could be approximated as constant when k& is sufficiently small.
Except for these cases, the increase of N with k is consistent with the finding that N" increases with Rg;c
[3]. From this data, it is suggested that both & and N, could be described as a function of Rg;c, which means that
Rg;c should be an essential factor to determine the values of both £ and N,.
[Conclusions] We proposed that both £ and N, could be described by using Rg;c as the essential factor. The
integrity of the model was discussed experimentally for various conditions. [Acknowledgement] This work was
partially supported by JSPS KAKENHI. [References] [1] T. Yang and K. Kita, 69" JSAP Spring Meeting (2022).
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Fig.1. The ¢ dependence of N/Si  Fig.2. The k-R"™ relationships for Fig.3. The N"-k relationships for
for a typical nitridation condition.  the conditions shown in the legend.  the conditions shown in the legend.
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