Subthreshold characteristics of 4H-SiC n- and p-channel MOSFETs at low temperature

Kyoto Univ. °Xilun Chi, Keita Tachiki, Kyota Mikami, Mitsuaki Kaneko, Tsunenobu Kimoto E-mail: chixilun@semicon.kuee.kyoto-u.ac.jp

Extremely high density of interface states (D_{it}) exist in SiC MOS systems and the D_{it} values rapidly increase with approaching the conduction band edge $(E_{\rm C})$ and the valence band edge $(E_{\rm V})$ [1]. However, conventional characterization methods of Dit based on C-V measurement of MOS capacitors have limits to estimate Dit at the energy level very close to the band edges (e.g., $E_{\rm C} - E_{\rm T} < 0.2$ eV). In previous studies, $D_{\rm it}$ very close to $E_{\rm C}$ was evaluated from subthreshold slopes of MOSFETs at low temperature [2, 3]. On the other hand, very few studies have been reported on the D_{it} very close to E_V and no comparison with the conventional characterization methods has been made. In this study, D_{it} very close to both E_{C} and E_{V} was evaluated from the low-temperature subthreshold slopes of n- and p-channel MOSFETs annealed in NO or N2.

The lateral n- and p-channel MOSFETs were fabricated on p- and n-type 4H-SiC (0001) epilayers on pand n-type substrates, respectively. The doping concentrations of the p- and n-type epilayers were 1×10^{15} cm⁻³ and 8×10^{15} cm⁻³, respectively. The gate oxide was formed by dry oxidation at 1300 °C for 20 min, followed by NO annealing (1250 °C, 70 min) or N₂ annealing (1400 °C, 45 min) [4]. The oxide thickness was about 30 nm, and the channel length and width were $8-10 \mu m$ and $170 \mu m$, respectively. Gate characteristics of the fabricated MOSFETs were measured at 77, 100, 200 and 300 K.

Fig. 1 shows the subthreshold characteristics of the fabricated n- and p-channel MOSFETs at 77, 200, and 300 K. In order to estimate D_{it} very close to the band edges, the SS values at the normalized drain current $(I_{DN} = I_D \times L/W)$ of 1×10^{-10} A (n-channel) and 1×10^{-11} A (p-channel) at different temperatures were used. For estimating the energy levels of D_{it} , the theoretical drain current was calculated using the following approximation formula:

$$I_{\rm DN} = e n_{\rm free}(E_{\rm f}) \mu V_{\rm d} \tag{1}$$

where e is the elementary charge, $n_{\text{free}}(E_{\text{f}})$ is the density of free carriers, μ is the mobility of free carriers, and $V_{\rm d}$ is the drain voltage. In the calculation, the mobilities of electrons and holes were assumed to be constant and the two-dimensional density of states was considered for the calculation of $n_{\rm free}$. Fig. 2 depicts comparison of the D_{it} distributions obtained from the SS values in this study and extracted by the $C - \psi_s$ method from C-V characteristics of SiC MOS capacitors in our previous study [4]. Dit in the energy range very close to the band edges $(E_{\rm C} - E_{\rm T} < 0.2 \text{ eV} \text{ or } E_{\rm T} - E_{\rm V} < 0.2 \text{ eV})$ was obtained. The extracted $D_{\rm it}$ values show good agreement with the results of $C - \psi_s$ method in the assessable energy range of the $C - \psi_s$ method and it follows the trends extrapolated from the $C - \psi_s$ results in the energy range closer to the band edges. The N2-annealed p-channel MOSFETs exhibited a slightly lower Dit than the NO-annealed ones at the energy levels very close to E_V , and the peak value of field-effect mobility (μ_{FE}) of the N₂-annealed p-channel MOSFETs (17 cm²/Vs) was higher than that in the NO-annealed ones (13 cm²/Vs) at 300 K [4]. On the other hand, although the NO-annealed n-channel MOSFETs showed a slightly higher D_{it} at the energy levels very close to $E_{\rm C}$ than the N₂-annealed ones, the peak value of $\mu_{\rm FE}$ in the NO-annealed n-channel MOSFETs $(40 \text{ cm}^2/\text{Vs})$ was higher than that in the N₂-annealad ones $(34 \text{ cm}^2/\text{Vs})$ at 300 K [4].

M. Noborio *et al, Phys. Status Solidi A* 206, 2374 (2009).
H. Yoshioka *et al, AIP Advances* 5, 017109 (2015).
T. Kobayashi *et al, Appl. Phys. Lett.* 108, 152108 (2016).
K. Tachiki and T. Kimoto, *IEEE Trans. Electron Devices* 68, 638 (2021).

Fig. 1. Subthreshold characteristics of NO- and N₂-annealed (a) n-channel and (b) p-channel SiC (0001) MOSFETs at different temperatures (77, 200 and 300 K).

Fig. 2. Comparison of D_{it} distributions extracted by the C- Ψ_s method from MOS capacitors and extracted from SSs of SiC MOSFETs at different temperatures near (a) $E_{\rm C}$ and (b) $E_{\rm V}$.