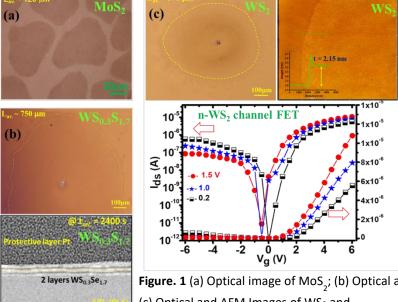
エレクトロニクスおよびオプトエレクトロニクス用の数層 2D 遷移金属ジカ ルコゲナイドの合成: ミスト CVD の展望


Synthesis of Few-layer 2D Transition Metal-Dichalcogenides for Electronics and Optoelectronics: A Prospective of Mist CVD

立命館大学 R-GIRO¹, 埼玉大理工研², A. Kuddus^{1*}, 横山工純², 毛利 真一郎¹, 白井 肇²

R-GIRO, Ritsumeikan University¹, Saitama University², A. Kuddus¹, K. Yokoyama², S. Mouri¹, and H. Shirai² *E-mail: <u>kuddus4910@gmail.com</u>

1. Introduction: Two-dimensional (2D) semiconductors; especially transition metal dichalcogenides (TMDCs) are potential candidates in modern electronic and optoelectronic for ultimate device scaling owing to their efficient electrostatic tunability, atomic thickness, and dangling bond-free surface with superior transport properties [1,2]. To explore and realize their full potential for practical applications, the synthesis of large-scale, uniform, and crystalline TMDC films using economical pathways and in a reproducible manner is one of the top challenges today. In this work, we report the growth of the few-layer TMDC films of MoS₂, WS₂, and WS_{2-x}Se_x on the Al_{1-x}Ti_xO_y wafer by a solution processes, simple mist chemical vapor deposition (Mist-CVD). We also demonstrate their application in FETs and in-plane p-n junction solar cells. **2. Experimental**: Ammonium tetrathiotungstate (NH₄)₂WS₄ and Ammonium tetrathiomolybdate (NH₄)₂MoS₄ were used as a precursor of WS₂ and MoS₂ respectively and N-methyl-2-pyrrolidone (NMP) as solvent. The generated mist by 3 MHz Atomizer was supplied into the hot-wall reaction tube by Ar/H₂ (25%) carrier gas at a furnace temperature (T_f) of 400– 600°C on Al_{1-x}Ti_xO_y coated p⁺-Si substrate. Subsequent sulfurization (selenization) was executed to further improve the quality of the as-deposited MoS_x (WS_x) films at T_f of 600 °C for 20– 40 min. Finally, the MoS₂, WS₂, and WS_{2-x}Se_x channel MOSFETs were fabricated using UV-lithography and a standard lift-off process with sputtered Au/Pt source and drain electrodes.

3. Results and Discussion: Fig.1 shows the optical microscope, AFM, and TEM images of mist CVD MoS₂, WS₂, and WS_{2-x}Se_x. Atomic few-layer thickness with a submillimeter lateral length MoS₂, WS₂, and WS_{2-x}Se_x flakes was obtained at an adjusted deposition time, precursor concentration, substrate surface treatment, and subsequent sulfurization (selenization) condition. In Fig. 1c, the transfer characteristics of WS₂ n-channel FETs with Au S/D electrodes depict the mobility of 40–50 cm²V⁻¹s⁻¹ and an on-off ratio of 2 × 10⁶. Thus, an efficient way of fabrication of 2D TMDCs films with a comparable dimension is realized using mist-CVD. We will discuss the perspective of mist CVD for the synthesis of atomic-layer TMDCs MoS₂, WS₂, and WS_{2-x}Se_x with their electronic and optoelectronic applications [2,3].

[1] J. Li et al. Small Sci. 2, 2200062 (2022), [2] A. Kuddus et al. Nanotechnology 33, 045601 (2022), A. Kuddus et al. Semicon. Sci. Technol. 37, 095020 (2022)

Figure. 1 (a) Optical image of MoS_2 ; (b) Optical and TEM images of $WS_{2-x}Se_x$; (c) Optical and AFM Images of WS_2 and transfer characteristics of n-WS₂ channel MOSFETs [2,3].

5 nm