Mist CVD 法により成長したα-In₂O₃ 薄膜の 低キャリア濃度化と MOSFET 製作

Reduction of carrier concentration in α-In₂O₃ films grown by Mist CVD and fabrication of MOSFET

工学院大学¹,立命館大学²,京都大学³,^O田口義士¹,山寺真理¹,山本拓実¹,林佑哉¹,村山衛¹, 小川広太郎¹,本田徹¹,尾沼猛儀¹,金子健太郎²,相川真也¹,藤田静雄³,山口智広¹

Kogakuin Univ.¹, Ritsumeikan Univ.², Kyoto Univ.³, ^oA. Taguchi¹, S. Yamadera¹, T. Yamamoto¹,

Y. Hayashi¹, M. Murayama¹, K. Ogawa¹, T. Honda¹, T. Onuma¹,

K. Kaneko², S. Aikawa¹, S. Fujita³, and T. Yamaguchi¹

E-mail: cm21033@ns.kogakuin.ac.jp

準安定相コランダム構造酸化インジウム(α-In₂O₃)は 3.7 eV のバンドギャップを有することが報告されており[1], α-In₂O₃ は Mist CVD 法により成長が可能である. その原料溶液には In(C₃H₇O₂)₃: In(acac)₃ と塩酸,超純水で調製されたものが広く用いられる[2,3]. 我々は,原料溶液中の塩酸濃度を制御することでα-Al₂O₃ 基板上へのα-In₂O₃ 直接成長に成功している[3]. また,炭素を含まないIn₂O₃パウダーを出発原料にすることで, as-grown でキャリア濃度を 10¹⁷ cm⁻³ 台まで減少させることに成功している[4].本研究では,Mist CVD 法により成長したα-In₂O₃ 薄膜の低キャリア濃度化と,低キャリア濃度α-In₂O₃ 薄膜を用いた MOSFET 製作について報告する.

Mist CVD 法を用いて(0001) α-Al₂O₃ 基板上に In₂O₃ を直接成長させた.実験に使用した原料溶 液は In₂O₃ パウダーおよび In(acac)₃を塩酸で溶解させ,超純水を加え調製した.この原料溶液を超 音波振動子にて霧状にし、キャリアガスによって基板のある反応炉へ輸送した.成長は、成長温

度 550°C, キャリア(O₂)ガス流量 5.0 L/min., 希釈(O₂)ガス流 量 0.5 L/min.で行った. また, 得られたα-In₂O₃薄膜を用いて MOSFET を製作した.

図1に α -In₂O₃の室温でのキャリア濃度とホール移動度の 関係を示す.原料溶液中の塩酸や出発原料の濃度を調整す ることで、キャリア濃度を 10¹⁷ cm⁻³ 台前半まで減少させる ことに成功した.また、ホール移動度は 200 cm² V⁻¹ s⁻¹ を超 える試料が再現性良く得られた.このことから、原料溶液 の調製条件が α -In₂O₃ の高品質化における重要なパラメー ターであることが示された.この結果から、最もキャリア 濃度が低い条件で成長した α -In₂O₃ を用いて、チャネル膜 厚が 100 nm、絶縁層の膜厚が 900 nm のトップゲート型 MOSFET を製作した.図 2 に α -In₂O₃ を用いて製作した MOSFET の伝達特性およびデバイス構造の模式図を示す. 伝達特性から 10⁵以上の ON/OFF 比が得られたことが分か り、 α -Al₂O₃ 基板上に直接成長した α -In₂O₃ 薄膜でトランジ スタ動作を実現した.

Fig. 1. Hall mobility as function of carrier concentration for α -In₂O₃ films.

and device structure of α -In₂O₃ MOSFET.

^[1] N. Suzuki et al., J. Cryst. Growth 401, 670 (2014).

^[2] K. Kaneko et al., MRS Advances 2, 301 (2017).

^[3] T. Yamaguchi et al., Appl. Phys. Express 13, 075504 (2020).

^[4] A. Taguchi et al., Phys. Status Solidi B 259, 2100414 (2021).