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Bistable control of phase transition of an optomechanical SSH chain by
radiation pressure
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Introduction: Nanomechanics has been successfully used to control nanophotonic devices [1]. On the other
hand, radiation pressure (that is, optical force) back-acting on nanomechanics has also been studied [2].
Optomechanical bistability is a typical phenomenon of this backaction [3]. Topological configurations of
optomechanics is an emerging research field [4], and in this paper, we theoretically investigate the
topological-trivial phase transition controlled by emplying optomechanical bistability.

Results: The investigated system is shown in Fig. 1(a). It is a Su—Schrieffer—Heeger (SSH) chain composed
of nanobeam photonic crystal (PhC) cavities. In each unit cell, one site is movable and the other is fixed. The
bonding modes (red-red or blue-blue, as shown) generating attractive force inside cells drive the movable
structure to the right [note: the antibonding modes between cells generate negligible force]. Thus, the
coupling rates are modified [the intra one (za) increases by +A¢ (gap narrowing) while the inter one (#g)
decreases by -At (gap broadening)]. Figure 1(b) shows the eigenfrequencies of a 5-cell system as functions
of At. The red curve is the desired mode in Fig. 1(a). (ta+A#)/(tg-Af) = 1 is the transition point between
topological and trivial phases. According to theoretical model [inset in Fig. 1(c)], when a pump light sweeps
around initial eigenfrequency (At = 0) of the system, optomechanical nonlinearity happens [see Fig. 1(c,d)].
Swept from higher to lower frequency, the system goes into trivial phase; while swept in the opposite
direction, it is always in topological phase. Inset in Fig. 1(d) shows COMSOL-simulated mode profiles
corresponding to the theoretically calculated two phases. Conclusively, we demonstrate the control of
topological-trivial phase transition by operating the radiation-pressure-induced bistable states.
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Fig. 1. (a) Schematic of optomechanical SSH chain. t, & tg: intra and inter coupling rates, respectively. (b)
Eigenfrequency of the model as a function of coupling rate change (A?). (c,d) Radiation-pressure-induced bistable states. Inset
in (c): equation set for the calculation. H: Hamiltonian of the system. y: dissipation rate of cavities. gom: optomechanical
coupling constant. Inset in (d): COMSOL-simulated mode profiles of trivial and topological phases.
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