High carrier transport based on perovskite quantum dots in perovskite matrix Yongge Yang, Yusheng Li, Chao Ding, Shuzi Hayase, Qing Shen*

Faculty of Informatics and Engineering, The University of Electro- Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan. yangyungke@gmail.com

Abstract

Metal halide perovskite quantum dots (PQDs) have attracted a lot of attention due to their tunable direct band gap absorption and excellent emission properties in optoelectronic devices such as solar cells (SCs)^[1]. However, due to the presence of surface-insulating ligands, achieving high carrier transport in the active layer of the above-mentioned optoelectronic device is still difficult and cumbersome^[2]. Here, we report a direct synthesis PQDs quasi-ink with capped by conductive ligands, which exhibits enhanced coupling induced by quantum dot fusion. Moreover, In situ formation of a type-II heterostructure of PQDs in perovskite matrix with enhanced carrier separation and transport. Finally, the prepared films exhibit higher carrier transport capabilities (μ_e =1.40cm²V⁻¹S⁻¹, μ_h =0.68cm²V⁻¹S⁻¹) relative to conventional ligand exchange-treated quantum dot films (μ_e =0.15cm²V⁻¹S⁻¹, μ_h =0.06cm²V⁻¹S⁻¹).

Results and Discussions

The steady-state fluorescence and TRPL of quantum dot films capped with conductive t ligands exhibit weaker fluorescence and shorter lifetime due to high carrier transport, Its carrier diffusion distance obtained by fitting are $L_D^e=181$ nm, $L_D^h=127$ nm, In contrast, the ligand exchange-treated quantum dot films are $L_D^e=49$ nm, $L_D^h=30$ nm^[3].

References

[1] Zhu, Z., Zhu, C., Yang, L. et al. Nat. Mater. 21, 1042–1049 (2022).

- [2] Zhang X, Huang H, Jin L, et al. Angewandte Chemie International Edition, 2022.
- [3] Liu Y, Li Z, Xu J, et al. Journal of the American Chemical Society, 2022, 144(9): 4009-4016.