赤外光照射下の Na₅R₄(SiO₄)₄F₅ (R = Y, Gd): Yb³⁺, Er³⁺ の可視発光特性 Visible luminescence characteristics of Na₅R₄(SiO₄)₄F₅ (R = Y, Gd): Yb³⁺, Er³⁺ under infrared irradiation

神戸大海事 ○(M2)田村 加奈葉, (B)西井 渉, 佐俣 博章

Kobe Univ., °Kanaha Tamura, Wataru Nishii, Hiroaki Samata

E-mail: samata@maritime.kobe-u.ac.jp

カーボンニュートラルの実現にとって、水素エネルギーの利用は重要な役割を果たすと考えられ、この水素の製造方法の1つに太陽光と光触媒を用いた水の分解がある。光エネルギーを用いた水分解には主に紫外光の利用が必要となるため、長波長光を紫外光にアップコンバージョン(UC)できる蛍光体の併用が有益となる。ここで、赤外光から紫外光へのアップコンバージョンを実現するためには、可視光領域における長波長光の発光を抑制し、短波長光の発光強度を上げる必要があると考える。

本研究では、赤外光を可視光に変換する UC 蛍光体の母体として多元系酸化物 $Na_5R_4(SiO_4)_4F_5$ (R=Y,Gd) を用い、賦活剤として Yb^{3+} , Er^{3+} を添加するとともに、母体中の Gd^{3+} の一部を Ca^{2+} で置き換えた試料を合成し、その赤外光照射時の可視発光特性を評価した。

試料は、Na₂CO₃, NaF, Gd₂O₃, Y₂O₃, Yb₂O₃, Er₂O₃, SiO₂, CaCO₃ を原料とした固相反応法により、大気中、1000-1100℃, 12 時間熱処理することで合成した。

得られた試料の結晶構造は、粉末 X 線回折のデータを用いた Rietveld 法により解析した。また、蛍光特性は、波長 980 nm の赤外光レーザーを光源として用いて分光器により評価した。

Fig. 1 は、Yb³+ を 2 mol%、Er³+ を 1 mol% 添加した $R=Y,Gd,Gd_{0.85}Ca_{0.15}$ の試料の Rietveld 解析結果である。解析結果から、単相の目的物質が得られていると判断した。これらに対し、波長 980 nm の赤外光を照射した際の蛍光スペクトルを Fig. 2 に示す。R=Gd では、 $^4F_{9/2} \rightarrow ^4I_{15/2}$ による赤色領域 ($\lambda=640$ -690 nm) と $^4S_{3/2} \rightarrow ^4I_{15/2}$ と $^2H_{11/2} \rightarrow ^4I_{15/2}$ による緑色領域 ($\lambda=520$ -570 nm) に発光が観測されたが、R=Y と $R=Gd_{0.85}Ca_{0.15}$ では、赤色領域の発光が大幅に抑制された。発表では、組成による発光特性について詳細に報告する。

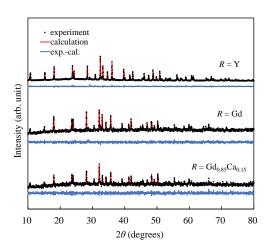


Fig. 1 Powder X-ray diffraction data of Na₅ R_4 (SiO₄)₄ F_5 (R = Y, Gd_{1-x}Ca_x): Yb³⁺, Er³⁺ and results of refinement by the Rietveld method.

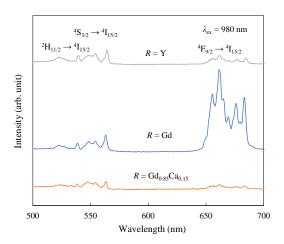


Fig. 2 Emission spectra of $Na_5R_4(SiO_4)_4F_5$ (R = Y, $Gd_{1-x}Ca_x$): Yb^{3+} , Er^{3+} under 980 nm irradiation.