## Mechanical nonlinearity control in doubly clamped MEMS beam resonators using a preloaded lattice mismatch strain

## (D) Chao Li<sup>1</sup>, Boqi Qiu<sup>2</sup>, Yuri Yoshioka<sup>1</sup>, Kazuhiko Hirakawa<sup>2,3</sup>, and Ya Zhang<sup>1</sup> Inst. of Eng., Tokyo Univ. of Agri. &Techno.<sup>1</sup>, IIS<sup>2</sup>/INQIE<sup>3</sup> Tokyo Univ.

## E-mail: s202837w@st.go.tuat.ac.jp

The control of mechanical nonlinearity is desirable for achieving the low-noise operation of MEMS resonators. In this study, we report on controlling the nonlinearity by introducing a lattice mismatch strain into the MEMS beams. The mechanical nonlinearity arises from the hardening ( $\alpha$ ) and softening ( $\beta$ ) nonlinearity terms in the Duffing motion equation of the MEMS beam. We found that the MEMS beam has a quasi-zero nonlinearity near the buckling condition, as shown in Fig. 1(a). This is because the large increase in  $\beta$  near the buckling condition (see Fig. 1(b)), greatly compensates for the  $\alpha$ , resulting in the suppression of the total nonlinearity.

Utilizing this effect, we fabricated In<sub>x</sub>Ga<sub>1-x</sub>As MEMS beams with a preloaded lattice mismatch strain, which was achieved by adding a small amount (x = -0.4%) of indium to the GaAs MEMS beam in the wafer growth.<sup>1,2</sup> The buckling condition was achieved by carefully modulating the beam length (*L*) of In<sub>x</sub>Ga<sub>1-x</sub>As samples. We drove the MEMS resonators at various oscillation amplitudes and measured the resonance frequency shifts( $\Delta f$ ). Figure 1(c) plots the measured  $\Delta f$  of the samples as a function of the oscillation amplitude at various *L*. As seen, the  $\Delta f$  changes from positive to negative as *L* increases and reaches a minimum near the buckling condition (*L*=103µm), demonstrating the effectiveness of using lattice mismatch for controlling the mechanical nonlinearity of MEMS resonators. Furthermore, we also estimated the total nonlinearity (*Y*<sub>T</sub>) in the MEMS beams from the frequency-amplitude curves shown in Fig. 1(c), which is plotted as the dots in Fig. 1(a). As seen, the calculated nonlinearity, *Y*<sub>( $\alpha,\beta$ ), reasonably agrees with the experimental *Y*<sub>T</sub>, indicating the model we built can be generally used to study the nonlinearity of MEMS beams.</sub>



**Figure 1** (a) The estimated total nonlinearity,  $Y_T$ , and the calculated effective nonlinearity coefficient,  $Y_{(\alpha,\beta)}$ , as well as its two terms  $Y_{(\alpha)}$  and  $Y_{(\beta)}$  as a function of *L*. (b) The calculated  $\alpha$  and  $\beta$  as a function of *L*. (c) The measured resonance frequency shifts ( $\Delta f$ ) of In<sub>0.004</sub>Ga<sub>0.996</sub>As samples with various *L*.

Reference

- 1. Boqi Qiu, Ya Zhang, Naomi Nagai, and Kazuhiko Hirakawa, Applied Physics Letters. 119 (15), (2021).
- 2. Chao Li, Boqi Qiu, Yuri Yoshioka, Kazuhiko Hirakawa, and Ya Zhang, *Physical Review Applied*. (Editorially approved for publication).