表面ラフネス散乱を抑制する為に電子谷の異方性を利用した 極薄膜 nMOSFET のチャネル材料と面方位の最適設計 **Optimum Channel Design of Extremely-Thin-Body nMOSFETs** Utilizing Anisotropic Valley—Robust to Surface Roughness Scattering 圭,陳家聰,トープラサートポン カシディット,竹中 充,高木 信一 (東大院工) O隅田 ^OK. Sumita, C.-T. Chen, K. Toprasertpong, M. Takenaka, S. Takagi (U. Tokyo, School of Eng.) E-mail: sumita@mosfet.t.u-tokyo.ac.jp

【背景】極薄膜(ETB)ナノシートチャネルは先端ロジック CMOS の将来ノードにおいて最も有望な構 造である.しかしながら、極薄膜チャネルでは表面ラフネス(SR)の効果が顕在化することで移動度が 大幅に劣化することが課題として知られている. そこで 2 次元材料が薄膜と高移動度の両方を同時に 実現出来る材料として注目されているが、CMOS 応用に十分な 2-3 nm の膜厚範囲において、従来の 3 次元半導体との優位性は明らかではない. 我々は以前に, 定量性が大幅に改善された SR 散乱の非線形 モデルを提案している[1]. 従って, 本研究では各種材料・面方位に提案モデルを適用することで, 2 nm の膜厚まで移動度を評価し、極薄膜チャネルにおける最適なチャネル材料と面方位を明らかにした[2].

【コンセプト】膜厚揺らぎに伴う量子化エネルギー揺らぎを小さくする為に,SR 散乱移動度の観点で は伝導質量ではなく、閉じ込め有効質量が重いことの方が重要である(Fig. 1). 従って理想的な電子谷 は、重いmzと軽いmxの両方を有する異方的な電子谷である.Fig.2に示す通り,(100)面内のΔ2点や(111) 面内のL₁点の閉じ込め質量は重く、さらに ETB チャネルを形成することで量子化エネルギー差によっ て伝導に適した m_zの重い谷に電子を閉じ込めることが可能となる. 各面方位における各材料の有効質 量を Table I に示す[2]. 本研究では、Table I に見られる通り、mzの重い電子谷が活用出来る(100) SOI、 (100) & (111) GOI, InAs-OI を最適なチャネル材料の候補として取り上げ,移動度を計算して比較した.

【結果】RMS を 0.2 nm に揃えた時の SR 移動度のベンチマークを Fig. 3 に, 2 nm 膜厚における各材料 の移動度の比較を Fig. 4 に示す[3]-[8]. ここでラフネスの相関長は TEM から直接見積もった. (100) SOI の SR 移動度は良好であるがフォノン散乱の寄与も大きい為、2 nm 以下の膜厚においては 2 次元材料に 移動度の優位性がある. 一方で(111) InAs-OI の移動度の実験値は低いものの, RMS を 0.3 nm まで改善 すれば高い移動度が期待出来る. (111) GOI は極めて異方的な L 谷を伝導帯端に持つことから, 2 nm の 薄膜においても非常に優れた移動度を有することが予想され、最も有望な構造であると言える.【謝辞】 本研究は、科学研究費補助金 (21J10272 及び 22H00208)の支援により実施した.【参考文献】[1] K. Sumita et al., IEDM, 406, 2021. [2] K. Sumita et al., IEEE TED 69, 2115 (2022). [3] K. Sumita et al., IEDM, 27, 2020. [4] K.-W. Jo et al., IEDM, 673, 2019. [5] W. H. Chang et al., ECS Trans. 86, 25 (2018). [6] K. Uchida et al., IEDM, 47, 2002. [7] S.-K. Su et al., Small Structures 2, 2000103 (2021). [8] M. Si et al., VLSI Symp., T2-4, 2021.

scattering in ETB channels and the importance of the confinement effective mass.

Fig. 3 Benchmark of SR-mobility with RMS of 0.2 nm.

and (111) surfaces, and the concept of electron confinement in ETB channels,

-	(110)	Δ_2	0.19	0.19
	Si	Δ_4	0.553	0.315
]	(110)	L_1	0.082	0.12
	Ge	L_2	0.224	0.082
	(111)	Г	0.023	0.023
	(111)	L_1	0.004	1.54
	IIIAS	L_2	0.094	0.10
	(111)	L_1	0.082	1.64
		L_2		0.092
	Ge	L_3	0.281	0.092

Fig.4 Benchmark of SRmobility for 2-nm-thick channels. Here, RMS of Si and Ge is 0.2 nm.