遠隔線量計に用いられる

Yb 添加 La₂Hf₂O₇ 近赤外発光シンチレータの発光特性 Emission Properties of a La₂Hf₂O₇ doped with Yb as NIR-emitting Oxide Scintillator for the Remote Dosimetry System 東北大金研¹,東北大 NICHe²,阪大レーザー研³,(株) C&A⁴,京都大複合研⁵ ^{•(PC)}石澤 倫¹,黒澤 俊介^{1,2,3},倉嶋 佑太朗¹,山路 晃広^{1,2},吉川 彰^{1,2,3,4}, 高田 卓志⁵,田中 浩基⁵ Institute for Materials Research, Tohoku Univ.¹, New Industry Creation Hatchery Center, Tohoku Univ.² Japan Institute of Laser Engineering, Osaka Univ.³,

Univ.² Japan Institute of Laser Engineering, Osaka Univ.³, C&A Corporation⁴, Radiation and Nuclear Science, Kyoto Univ.⁵, °(PC) Satoshi Ishizawa¹, Shunsuke Kurosawa^{1,2,3}, Yutaro Kurashima¹, Akihiro Yamaji^{1,2}, Akira Yoshikawa^{1,2,3,4}, Takushi Takata⁵, Hiroki Tanaka⁵ E-mail: satoshi.ishizawa.a2@tohoku.ac.jp

光検出器が利用できないほどの高線量率空間における線量測定は、(i)高線量率場に設置したシンチ レータの発光を、(ii)光ファイバーで低線量率空間まで伝送させ、(iii)光検出器で検出する遠隔線量計に より、その遂行が期待される[1]。遠隔線量計用のシンチレータ素子としては Cs₂Hfl₆や Cr:α-Al₂O₃ (ruby) などの結晶が検討・開発されてきた[1–3]。一方で本研究では、γ線に対する阻止能が既存のシンチレ ータ素子を凌駕し、近赤外発光を有する新規材料「Yb 添加 La₂Hf₂O₇ (Yb:LHO) 結晶」の開発に取り組 んでいる[4]。現在は組成や光学特性等について 2 mm³程度の Yb:LHO シンチレータ結晶の特性評価を 進めており、その進捗を講演する

2418℃と非常に高い融点を有する Yb:LHO を、Core heating (CH)法 [5]を用いてその結晶の育成に成 功した。Yb:LHO 結晶について、その組成を Electron probe microanalyzer (JXA-8530, JEOL)により、フ オトルミネッセンス(PL)等を積分球(C9920-02G, Hamamatsu Photonics KK.)を用いて、それぞれ調べた。 さらに、γ線による 0.0014–2.1 kGy/h の線量率空間における Yb:LHO 結晶の発光特性を、京都大学複合 原子力科学研究所の約 77 TBq の⁶⁰Co を用いて、既存の赤色発光体である ruby と比較しながら調べた。

育成した Yb:LHO 結晶に Xe ランプを用いて 883, 906 ならびに 916 nm の励起光をあてたところ、

 ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ 遷移による Yb³⁺由来のシャープな発光ピー クを観測した。Fig. 1 に γ 線照射実験で各線量率空間に 対して得られた Yb:LHO と ruby の発光強度を示す。 Yb:LHO のダイナミックレンジの下限値はruby と同程度 の 0.18 kGy/h であることが分かった。また~1 kGy/h での 信号対ノイズ比(S/N 比)を ruby と Yb:LHO について比較 すると、Yb:LHO は高線量率下で遠隔線量計に用いられ るシンチレータの有望な候補となることが示された。

dose rate (⁶⁰Co gamma-rays)

参考文献 [1] E. Takada et al., J. Nucl. Sci. Technol. **36** (8) (1999). [2] C. Ito et al., J. Nucl. Sci. Technol. **51** (2014), [3] S. Kodama, S.

Kurosawa and A. Yoshikawa et al., Appl. Phys. Express, **13** (2020), [4] 石澤, 黒澤、吉川ら、第 82 回応用物理学会秋季 学術講演会、2021 年 9 月, [5] Y. Kurashima, S. Kurosawa and A. Yoshikawa et al., Cryst. Growth Des., 21 (2021).