生体イメージング用近赤外蛍光体(Ca1-x,Mx)2GeO4:Mn⁵⁺ (M=Sr,Ba) (Ca1-x,Mx)2GeO4:Mn⁵⁺ (M=Sr,Ba) near-infrared phosphors for bio imaging 鳥取大学院エ ⁰三千 広人、谷口 コナン、大観 光徳 Graduate School of Tottori Univ.¹ ⁰Hiroto Sanzen¹, Konan Taniguchi², Koutoku Ohmi³ E-mail: ohmi@tottori-u.ac.jp

[背景・目的]

蛍光生体イメージングとは生体内に蛍光体を含む薬剤 を注入,検出器を用いて生体内の動きを可視化する技術 である.生体イメージング用の蛍光体の条件はナノ粒子 サイズであること,生体適合性が高いこと,生体の窓と呼 ばれる生体内での光損失が少ない波長域での励起・発光 をすることの3つである.これまでの研究で生体の窓内 で励起・発光をする Mn⁵⁺を発光中心と,水熱合成法によ る母体材料 Ca₂GeO₄への Mn⁵⁺付活とナノ粒子の合成に成 功している^[1].本研究では母体結晶 Ca₂GeO₄における Ca サイトの Sr, Ba 部分置換により Mn⁵⁺の付活促進を試み た.

[実験方法]

固相反応法により (Ca_{1-x}M_x)₂GeO₄:Mn⁵⁺ (M=Ba, Sr)を作製 した. 出発材料 CaCO₃, GeO₂, MnCO₃, MCO₃ をアセトンで 湿式混合し, 1 次焼成 600 ℃を 6 時間, 2 次焼成 1280 ℃を 10 時間行った. Sr または Ba 添加比率 x は 0, 0.06, 0.12, 0.20 と変化させた. いずれの試料とも, Mn 濃度は 0.5 mol%とした.

[実験結果及び考察]

(Ca_{1-x}Ba_x)₂GeO₄:Mn⁵⁺試料の X 線回折(XRD)パターンを Fig. 1 に示す.

同図中に示す Ca₂GeO₄の ICSD パターンと見比べると, 全ての試料で目的とする結晶相が生成され, Ba 添加によ りピークが高角度側にシフトしていることが分かる. Ba²⁺ は Ca²⁺よりもイオン半径が大きいので低角度側へシフト すると予想されるが, 逆の結果となっており, その原因は 不明である. さらに Ba 添加により 30°付近に 2 本の不 純物ピークが現れるが, これは Ba₃CaGe₂O₈と同定された. Figure 2 に (Ca_{1-x}Sr_x)₂GeO₄:Mn⁵⁺試料の XRD 測定結果を示

す. Ba 混晶試料と同様に,全ての試料で目的結晶相が確認され,ピークも高角度側へシフトしている.ただし不純物相の生成は見られない.

Figure 3 に Ca₂GeO₄:Mn⁵⁺, (Ca_{0.94}Ba_{0.06})₂GeO₄:Mn⁵⁺, (Ca_{0.94}Sr_{0.06})₂GeO₄:Mn⁵⁺の拡散反射スペクトルを示す. 全 試料ともに 600 nm ~ 700 nm に Mn⁵⁺の 3d-3d 内殻遷移 ${}^{3}T_{1}({}^{3}F) \rightarrow {}^{1}E, {}^{1}A_{1} \rightarrow {}^{1}E$ に対応するブロードな吸収が確認される.

この吸収量の混晶比 x 依存性を Fig. 4 に示す. Ba 混晶で は吸収は増加するが, Sr 混晶では減少している.当日は PL 測定結果も報告する予定である.

[参考文献]

[1] 新田, 他, 信学技報, vol. 121, no. 353, EID2021-7, p. 13.

Fig.1 XRD patterns of (Ca_{1-x},Ba_x)₂GeO₄:Mn⁵⁺samples.

Fig.2 XRD patterns of (Ca_{1-x},Sr_x)₂GeO₄:Mn⁵⁺samples.

Fig.4 Dependence of absorption intensity on x.