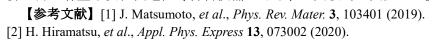
実験的に決定した水素置換型鉄系超伝導体 SmFeAs0 の 上部臨界磁場と磁気異方性

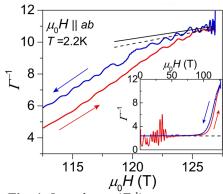
Experimentally determined upper critical fields and magnetic anisotropies of H-substituted iron-based superconductor SmFeAsO

東工大フロンティア研¹,物質・材料研究機構²,東工大 MDX 元素戦略センター³,東大物性研⁴

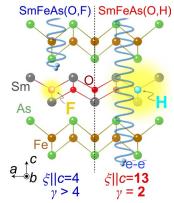
[○]半沢 幸太¹,松本 惇平¹,飯村 壮史^{2,3},小濱 芳允⁴,平松 秀典^{1,3},細野 秀雄^{2,3}

MSL, Tokyo Tech¹, NIMS², MDX RCES, Tokyo Tech³, ISSP, Tokyo Univ⁴, [°]Kota Hanzawa¹, Jumpei Matsumoto¹, Soshi Iimura^{2,3}, Yoshimitsu Kohama⁴, Hidenori Hiramatsu^{1,3}, Hideo Hosono^{2,3}


E-mail: k-hanzawa@mces.titech.ac.jp


【緒言】次世代の高磁場用電磁石や送電ケーブル等への超伝導応用を実現するための材料には、高い臨界温度 (T_c) と臨界電流 (J_c) のみならず、高い上部臨界磁場 (μ_0H_{c2}) とその小さい磁気 異方性 $(\gamma = \mu_0H_{c2}||ab/\mu_0H_{c2}||c)$ も求められる。これらを満たす材料候補として、鉄系超伝導体が着目されている。中でも、122 型 BaFe₂As₂ は高 J_c 、低 γ (\sim 2) と、比較的高い T_c (38 K)、 μ_0H_{c2} (60-70

T)を有するため、有望な候補である。一方、鉄系超伝導体で最も高い T_c (55 K)を有する 1111型 SmFeAsO は、OをFやHで部分置換することで超伝導を発現するが、大型単結晶やエピタキシャル薄膜の作製が困難であるため、応用を目指した研究は 122型ほど進んでいない。近年、我々は SmFeAsOエピタキシャル薄膜への CaH2を用いた高濃度 H 置換に成功し、高 T_c [1]と高 J_c [2]を見いだしたが、 μ_0H_{c2} が非常に高いため、その絶対値や γ を実験的に決定できていなかった。本研究では、最大 130 T のパルス強磁場下で SmFeAs(O,H)エピタキシャル薄膜 (T_c =45 K)の電子輸送特性を調べた。


【結果】一巻きコイル法を用いて ab 面に沿って 130 T まで磁場を印加した結果(図 1)、2.2 K において μ_0H_{c2} が~120

Tに達することを実測した。これは 1111 型 SmFeAsO では初めての極低温における $\mu_0H_{c2}(0)$ の実験的な決定である。また、c 軸に沿った場合では、two band モデルを用いた解析から $\mu_0H_{c2}(0)$ は~80 T と見積もられ、 γ 値は 2.1 と 122 型 BaFe₂As₂ や MgB₂ に匹敵する低い値であることを明らかにした。見積もったコヒレンス長(ξ)が、ab 面内では F 置換型と差がなかったのに対し、c 軸方向では H 置換型の方が約 3 倍長くなったことから、層状構造にもかかわらず、H 置換によって実現された 3 次元的な電子構造が低 γ の起源と結論づけた(図 2)。以上から SmFeAs(O,H)は、高い μ_0H_{c2} 、 T_c 、 J_c と低い γ を併せ持つ有望な次世代超伝導材料候補である、と実験的に実証した。

Fig. 1. Impedance (Γ^{-1}) measurement under high magnetic fields of up to 130 T. The inset shows Γ^{-1} in the full field region. The black dashed and solid lines are the least-squares fits of the normal -state resistance in the up (red) and down (blue) field sweeps.

Fig. 2. Schematic image of carrier conduction in F- (left) and H-substituted (right) SmFeAsO along the *c* axis.