Speciation distribution of iodine isotopes (¹²⁷I and ¹²⁹I) in the Beaufort, Chukchi, and Bering Seas

The Univ. of Tokyo¹, Nihon Univ.², JAMSTEC³, ^o(P) Yuanzhi Qi¹, Qiuyu Yang¹, Takeyasu Yamagata¹, Hiroyuki Matsuzaki¹, Hisao Nagai^{1,2}, Yuichiro Kumamoto³ E-mail: yuanzhiqi@um.u-tokyo.ac.jp

Because of its special geographical location, the Arctic Ocean and its adjacent seas are very sensitive to climate change, and the material and energy cycles in them will in turn have an important impact on global climate change. Here, we present results on concentrations of different iodine isotopes (¹²⁷I and ¹²⁹I) of total iodine (TI), iodide (Γ), and iodate (IO_3^-) in seawater samples of two depth profiles collected in the Beaufort Sea and 15 additional surface seawater samples collected in the Beaufort, Chukchi, and Bering Seas from 12 August to 6 October 2022. T¹²⁷I and salinity showed a very good positive linear correlation, but there is no obvious correlation between T¹²⁹I and salinity, indicating that the distribution of T¹²⁷I is controlled by the dilution of fresh water, while T¹²⁹I had other sources. For T¹²⁹I, ¹²⁹I⁻, and ¹²⁹IO₃⁻, two depth profiles showed very similar vertical trends (Fig. 1), which are decreasing gradually from the surface with depth, increasing sharply between the depth of 200 and 300 m, maintaining a high concentration at the depth of 300 to 800 m, and then decreasing gradually with depth. According to the distribution of ¹²⁷I and ¹²⁹I, we identified different sources of seawater in our study area, including Pacific water, Atlantic water, freshwater, and aged Arctic water.

Large ¹²⁹I concentration differences between iodide $(1-16 \times 10^7 \text{ atoms/L})$ and iodate $(1-28 \times 10^7 \text{ atoms/L})$ atoms/L) were observed in the study area. In the surface layer, ${}^{129}I^-$ and ${}^{129}IO_3^-$ have similar concentrations, but as the depth goes down, there was a large difference between the two and ¹²⁹I⁻ concentrations were significantly lower than ¹²⁹IO₃⁻ concentrations. Even so, the ${}^{129}I^{-}/{}^{127}I^{-}$ atom ratios were higher than ${}^{129}IO_3^{-}/{}^{127}IO_3^{-}$ atom ratios at any depth. In the Arctic intermediate layer, where the seawater originates mainly from the Atlantic Ocean and has migrated in isolation for decades, the aforementioned differences were most pronounced, suggesting that the exchange between I⁻ and IO₃⁻ was extremely slow in the deep ocean. Our study shows that ¹²⁹I can provide essential and detailed information for tracing water masses and studying the iodine cycle.

Fig.1. Distribution of different ¹²⁹I species.