超ワイドバンドギャップ酸化物混晶のバリガ性能指数の評価

Evaluation of the Baliga figure of merit for ultra-wide bandgap oxide alloys

都産技研¹, 立命館大学², 工学院大学³, 京都大学⁴

O太田 優一¹, 金子 健太郎², 尾沼 猛儀³, 藤田 静雄⁴

TIRI¹, Ritsumeikan Univ.², Kogakuin Univ.³, Kyoto Univ.⁴,

^oY. Ota¹, K. Kaneko², T. Onuma³, S. Fujita⁴

E-mail: ota.yuichi@iri-tokyo.jp

パワーデバイス性能の指標として一般的に Baliga の性能指数(BFOM)が用いられている。この BFOM は物質の物理的特性によって決まるが、絶縁破壊電界強度(*E*_c)等は多くの場合推定値を使用 している。しかし、混晶半導体の場合は物性値を推定すること自体が困難であり、参考となる BFOM を算出することができていない。そこで本研究では超ワイドバンドギャップ酸化物混晶の BFOM を推定する手法を検討し、BFOM の組成依存性を評価することを目的とした。

BFOM の推定は岩塩構造の $Mg_xZn_{1-x}O$ 及びコランダム構造の $(Al_xGa_{1-x})_2O_3$ を対象とした。バンド ギャップ (E_g) の組成依存性は経験式によって評価し[1]、 E_c は DFT と機械学習から提案された式の 周波数カットオフ ω_{max} を原子の換算質量から見積もる ω_{LO} に修正して計算した[2-3]。移動度は E_g から計算可能な極性光学フォノン散乱が支配する μ_{POP} に対し擬似的な合金散乱の効果を取り込み [4]、比誘電率は単純な線形補間値を使用した。

Fig. 1 に計算した $Mg_xZn_{1-x}O$ 及び $(Al_xGa_{1-x})_2O_3$ の E_c を示す。いずれも組成 Mg(Al)の増加による E_g 上昇のため、 E_c も増大している。なお、今回の推定値は E_g のみから算出した数値よりも全体的 に低い傾向となった。Fig. 2 に x = 0の時の値でそれぞれ規格化した BFOM を示す。本推定におい ては、 E_c が増加する組成領域でも BFOM が減少する可能性があることがわかった。したがって混 晶系の場合、単純に E_c の増大だけでは BFOM を上昇させることはできないことを見出した。

[1] F. Di. Quarto *et al.*, J. Electrochem. Soc. **164**, C671 (2017). [2] C. Kim *et al*, Chem. Mater. **28**, 1304 (2016).
[3] S. Adachi, "*Properties of Group-IV, III-V and II-VI Semiconductors*" (Wiley, 2005). [4] R. Ravichandran *et al*, Opt. Mater. **60**, 181 (2016). 【謝辞】本研究の一部は科研費(20H00246)の援助を受けた。

 $(Al_xGa_{1-x})_2O_3$ alloys.

 $(Al_xGa_{1-x})_2O_3$ alloys.