イオン注入による酸化物 TFT の閾値電圧制御

Threshold Voltage Control of Oxide-TFTs by Ion Implantation

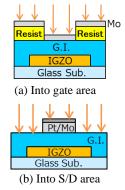
日新電機¹, 日新イオン機器² [○]酒井 敏彦¹, 藤原 将喜¹, 東 大介¹,安東 靖典¹, 松尾 大輔², 宇井 利昌², 安田 圭佑², 山根 裕也², 立道 潤一²

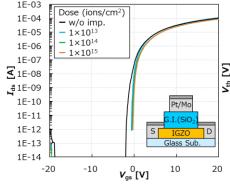
Nissin Electric Co., Ltd. ¹, Nissin Ion Equipment Co., Ltd. ², °Toshihiko Sakai¹, Masaki Fujiwara¹, Daisuke Azuma¹, Yasunori Andoh¹, Daisuke Matsuo², Toshimasa Ui², Keisuke Yasuta²,

Yuya Yamane² and Jun-ichi Tatemichi²

E-mail: sakai_toshihiko@nissin.co.jp

【はじめに】


酸化物半導体 TFT は、高移動度化に伴い、閾値電圧(V_{th})が負側にシフトしやすいことが知られている。本研究では、金属薄膜を通過させて下層の SiO_2 膜にイオン注入を行うことで、固定電荷制御が可能である ¹⁾ことを応用し、酸化物 TFT のゲート絶縁膜(G.I.)へのイオン注入による酸化物 TFT の V_{th} の制御を目的として、検討を行った。


【実験】

評価はセルフアラインによるトップゲート構造の IGZO-TFT で行った。Fig. 1(a)に示すように、Mo(10nm)/G.I.(100nm)構造に対してイオン注入 $(N^+ / 1 \times 1.0 \times 1$

【結果】

ポストアニール 200°C後の伝達特性を Fig. 2 に示す。G.I.へのイオン注入によって、 V_{th} の正側 シフトが確認できた。 V_{th} のドーズ量およびポストアニール温度依存性を Fig. 3 に示す。G.I.へのイオン注入とポストアニールとの組み合わせにより、 V_{th} 制御が可能であることを確認できた。

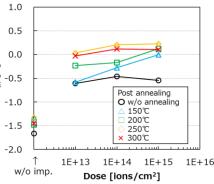


Fig.1.: Ion implantation process

Fig.2.: Transfer curves of oxide-TFTs

Fig.3.: Dependence of $V_{\rm th}$ on dosage and annealing temperature

References

- 1) T. Sakai et al., AM-FPD'22, 130 (2022)
- 2) T. Ui et al., AM-FPD'20, 115 (2020)
- 3) K. Yasuta et al., AM-FPD'21, 77 (2021)