エッチング停止位置検出層の導入によるゲートリセス構造

AIGaN/GaN HEMT のしきい値電圧制御性の向上

Improvement of Threshold Voltage Controllability in Fabrication of Recessed-Gate GaN HEMTs by Introducing Etch Stop Detection Layer 名大院工¹,名大未来研²,名工大³

⁰大石 健介¹, 高橋 英匡¹, 安藤 裕二^{1,2}, 分島 彰男³, 須田 淳^{1,2}

Nagoya Univ.¹, Nagoya Univ. IMaSS², Nagoya Inst. of Tech.³

[°]Kensuke Oishi¹, Hidemasa Takahashi¹, Yuji Ando¹, Akio Wakejima³, Jun Suda^{1,2}

E-mail: oishi.kensuke.f4@s.mail.nagoya-u.ac.jp

無線電力伝送のマイクロ波レクテナ用デバイスとして、我々はノーマリオフ AlGaN/GaN HEMT のゲート電極とオーミック電極を短絡したゲーテッドアノードダイオード(GAD)の開発を行って いる.前回、我々は Fig. 1(a)に示すゲートリセス構造 GAD を報告したが[1]、ゲートリセス形成に AlGaN/GaN の選択エッチングを用いることができないため、ウエハ面内でのしきい値電圧の分布 (変動)が大きいという課題があった.今回、エッチング停止位置検出層(マーカー層)を導入するこ とで、しきい値電圧制御性向上に取り組んだので報告する. (a)

デバイス作製には、半絶縁性 SiC 基板上に MOVPE 法により成 長した Fig. 1(b)に示すエピ層を用いた. ソース、ドレインの形成に 続いて SiN マスクを形成し、Cl₂系 ICP で AlGaN 層のリセスエッチ ングを行った. エッチング停止時間の制御のため、光干渉式膜厚計 でエッチングの進行をモニターし、GaN マーカー層に到達した時点 でエッチングを停止した(GaN マーカー層の一部は残る). その後、 ゲート電極を形成してデバイスを完成させた.

Fig.2 に作製した素子のしきい値電圧の面内分布を示す. マーカ ー層なしの従来構造では, -1.1~+0.65 V と大きなばらつきがあるが,

マーカー層ありの構造は+0.05~+0.35 V とばらつきが抑え られ、しきい値電圧のウエハ面内均一性が大きく向上した. この理由を調べるため TCAD シミュレーションによりしき

い値電圧のゲートからチャネル層までの厚さ(tg)依存性を計算した(Fig.3). マーカー層なしの従来 構造の場合 AlGaN 層の残厚によって閾値電圧が変動する(Fig. 3(a))が,マーカー層ありの構造だと GaN マーカーの残厚にかかわらずしきい値電圧の変動がほぼ一定(Fig. 3(b))である. これは分極の 相殺により GaN マーカー層中の電界がほぼ0であるためである. この特性に助けられてしきい値 電圧のウエハ面内均一化が実現できたと考えられる.

本研究は、内閣府総合科学技術・イノベーション会議の戦略的イノベーション創生プログラム(SIP) 「IoE 社会のエネルギーシステム」(管理法人:JST)によって実施された.

Fig.2: Cross-wafer distribution of threshold voltage. Fig.3: $V_{\rm th}$ calculated by TCAD simulation

Fig.3: V_{th} calculated by TCAD simulation as a function of gate-to-channel distance(t_{g}) (a) previous work and (b) this work.

Fig. 1: Schematics of AlGaN/GaN HEMT (a) previous work and (b) this work.