Cavity-enhanced photo-thermoelectric effect in Landau-quantized graphene IIS Univ. Tokyo¹, Fujitsu², NIMS³, CREST-JST⁴

°Sabin Park¹, Rai Moriya¹, Kenjiro Hayashi², Naoki Fushimi², Yijin Zhang¹, Satoru Masubuchi¹, Kenji Watanabe³, Takashi Taniguchi³, Daiyu Kondo², Shintaro Sato², Tomoki Machida^{1,4}

E-mail: sabinp@iis.u-tokyo.co.jp

We demonstrate enhancement of photo-thermoelectric effect (PTE) of graphene in infrared (IR) region by using TiO₂/Au optical cavity. As shown in Fig. 1a, h-BN/graphene (Gr)/h-BN device with a graphite local gate was fabricated on TiO₂/Au/SiO₂/Si substrate (optical micrograph is shown in Fig. 1b). The TiO₂ and Au layers work as a dielectric and a mirror, respectively. The incident and reflected IR light exhibits constructive interference at the location of Gr (\bigcirc) to enhance its optical absorption. Photovoltage ($V_{\rm ph}$) due to the PTE versus carrier density (n_e) of Gr tuned by a gate voltage V_G is shown in Fig. 1c (measured under irradiation of $\lambda = 9.25 \,\mu\text{m}$ at $T = 2 \,\text{K}$). Comparing with the V_{ph} from the reference Gr device w/o cavity (Fig. 1d), larger $V_{\rm ph}$ signal was obtained in the device w/ cavity around $n_{\rm e} \sim 0$. The amplitude of $V_{\rm ph}$ defined by arrows in Figs. 1c and 1d is plotted for various λ in Fig. 1e. The cavity-enhanced V_{ph} appears around $\lambda = 9.25 \ \mu m$ having 60 times larger $V_{\rm ph}$ signal than the device w/o cavity. Experiment showed good agreement with calculated light intensity $(|E|^2/|E_0|^2)$ from FDTD method indicated by solid and dashed lines in Fig. 1e. In a presence of magnetic field B, series of $V_{\rm ph}$ peaks are observed at cavity resonance condition of $\lambda = 9.25 \,\mu m$ (Fig. 1f). The dominant peaks are due to cyclotron resonance (CR) transitions in monolayer Gr as indicated by T_3 to T_7 in Figs. 1f and 1g. This is evidence of cavity-enhanced CR. Further, we observed additional $V_{\rm ph}$ signals depicted by $\mathbf{\nabla}$ in between CR signals (Fig. 1f), which is due to cavity-enhanced cyclotron anti-resonance. These results demonstrate a coupled optoelectronic system between IR cavity and Landau-quantized graphene.

Fig. 1: (a) Device structure. (b) Optical micrograph. (c,d) V_{ph} data from the device (c) w/ cavity and (d) w/o cavity. (e) V_{ph} vs λ . (f) V_{ph} vs. B. (g) CR transitions in monolayer Gr.