擬一次元磁性を示す無機-有機ハイブリット鉄化合物ナノシート

Inorganic-Organic Hybrid Iron Nanosheet showing Quasi 1 Dimensional Magnetism

物材機構¹,群馬大²,東京都立大³,Amsterdam大⁴,ASCR⁵,Charles大⁶,阪大⁷ [°]中根茂行¹,名嘉節¹,寺田典樹¹,J. Valenta¹,佐藤和好²,砂川晃佑³,久富木志郎³, A. de Visser⁴, J. Kaštil⁵, M. Míšek⁵, J. Prchal⁶, F. Li⁷,**阿部浩也**⁷

NIMS¹, Gunma Univ.², Tokyo Metropolitan Univ.³, Univ. Amsterdam⁴, ASCR⁵, Charles Univ.⁶, Osaka Univ.⁷, ^oTakayuki NAKANE¹, T. Naka¹, N. Terada¹, J. Valenta¹, K. Sato², K. Sunakawa³, S. Kubuki³, A. de Visser⁴, J. Kaštil⁵, M. Míšek⁵, J. Prchal⁶, F. Li⁷ and H. Abe⁷

E-mail: Nakane.Takayuki@nims.go.jp

材料研究は、金属, セラミックス, 有機物といったカテゴ リーに分かれて研究されてきたが、その境界は近年、物性的 にも構造的にも曖昧になっている。例えば、構造的視点で見 ると、近年は金属やセラミックスのイオンや構造体に有機分 子が結合したハイブリット化合物が注目されている。ハイブ リット化合物の特徴は、明瞭な機能を発現しやすい金属やセ ラミックスの構造体が、多彩な材料設計を期待できる有機分 子との結合を介して原子・分子レベルで規則配列するところ にあり、機能性物質を高度に配列させる技術として見れば、 究極のコンポジット体と見なすことができる。この特徴は例 えば、量子マテリアルの創製研究への応用を期待できる。量 子マテリアルの研究では、量子効果が期待できるナノサイズ で物質を作製する必要があるが、応用的視点に立てば、その 量子機能体を規則配列させる意義は大きい。この場合、ナノ 粒子やナノワイヤーは合成後に配列するのが難しいので、ハ イブリット化合物が注目されることになる。我々もこの観点 でハイブリット化合物に注目し、Fe3O4の形態制御に有用な ナノシート状の前駆体物質1が、無機-有機ハイブリット化合 物であることを発見した。本発表では、その詳細について報 告する。

試料となるシート状の前駆体物質はソルボサーマル法で 合成した。試料は、0.5 Mと3 Mに調整した FeCl₃と CH₃COOK の溶液を1:1 でエチレングリコールに混合して 180 ℃ で2 時 間加熱し、沈殿物を遠心分離・乾燥させること得た。本研究 では、この試料に対して XRD や FT-IR, Raman 分光, メスバ ウアー分光, TEM 等で構造評価を行い、OEA や ICP で組成分 析, SQUID や比熱測定で磁気特性等を評価した。

Fig. 1 は、得られた試料の磁化率である。20K 付近に見ら れる転移点と高温側の 120K 付近をピークとするなだらかな 温度依存性が特徴的である。この温度性依存性は、三次元的 な化合物を想定した Currie-Weiss 則等では解析が困難だが、 低次元の反強磁性と見なすと解析の糸口が見える。しかし、 実験結果を純然たる一次元磁性体の Fisher モデル² (青実線)

と近似させるには、反磁性的なバックグラウンドを考慮する必要があり(青波線)、それでも完全に一致 させるのは難しい。一方、分光測定の結果では、FT-IR, Raman スペクトルの双方でエチレングリコー ル(EG)に類似した吸収バンドを確認することができる(Fig.2)。メスバウアー分光の結果は、Fe³⁺が錯体 よりもむしろ酸化物に近い状態で存在することを示唆している。このことから、本物質は、Fe³⁺が 振一 次元的なネットワークのみを残す小ユニットの酸化鉄のような構造体と EG に類似した有機分子が規 則配列した複合構造のハイブリット化合物であると考えられる。また、TEM 観察の結果が、酸化鉄状 の一次元鎖がナノシートの面内ではなく面直方向に規則配列している点は、量子マテリアルの創製に 資する点で興味深い。

¹ H. Abe *et al.*, *Int. J. Mol. Sci.*, **20** (2019) 3617,

² M.E. Fisher, Am. J. Phys., **32** (1964) 343