Converse magnetoelectric effect in bcc Co₃Mn/PMN-PT(001) multiferroic heterostructures

GSES, Osaka Univ. ¹, CSRN, Osaka Univ. ², GSE, Osaka Univ. ³, OTRI, Osaka Univ. ⁴ °(M1) Yuichi Murakami ¹, Takamasa Usami ², Yu Shiratsuchi ^{3,2,4}, Yuya Sanada ¹, Shinya Yamada ^{2,1,4}, Ryoichi Nakatani ^{3,2,4}, and Kohei Hamaya ^{2,1,4} E-mail: u814443k@ecs.osaka-u.ac.jp

As a highly efficient method for controlling magnetization vectors by applying an electric field (*E*), ferromagnetic (FM)/ferroelectric (FE) multiferroic heterostructures are promising [1]. To apply this structure to spintronic devices such as MRAM, it is essential to use FM materials that exhibit a high TMR ratio as FM electrodes in magnetic tunneling junctions (MTJs). Recently, metastable body-centered-cubic (bcc) Co_3Mn alloys have been focused on as the electrodes in MTJs [2]. However, there is no study of the Co_3Mn -based multiferroic heterostructures. In addition, since a bulk Co_3Mn alloy, in general, has thermodynamically stable face-centered-cubic (fcc) and/or hexagonal-close-packed (hcp) phases [3], exploring of the detailed growth condition of Co_3Mn on a FE material is also required. In this study, we demonstrate bcc Co_3Mn -based multiferroic heterostructure and giant converse magnetoelectric (CME) effect at room temperature.

A 30-nm-thick Co₃Mn film was grown on a FE Pb(Mg_{1/3}Nb_{2/3})O₃-PbTiO₃(001) [PMN-PT(001)] substrate by molecular beam epitaxy. Here, PMN-PT was chosen due to its large piezoelectric effect, and the mismatch between the lattice constant of the bcc Co₃Mn and the diagonal length of the lattice constant of the PMN-PT is less than 1%. Prior to the growth of Co₃Mn layer, a 2-nm-thick Fe layer was terminated on the PMN-PT(001) surface. Subsequently, the Co₃Mn layer was grown at 200°C. Figure 1(a) shows the X-ray diffraction (XRD) profile of the Co₃Mn/Fe/PMN-PT(001) heterostructure. A diffraction peak from the bcc Co₃Mn(002) is observed at 2 θ of ~ 66 degrees, indicating the presence of (001)-oriented and metastable bcc Co₃Mn on PMN-PT(001). To investigate the CME effect, we measured an in-plane magneto-optical Kerr effect at room temperature with applying an *E*. Figure 1(b) shows representative magneto-optical Kerr loops for the bcc Co₃Mn/Fe/PMN-PT(001). When the *E* value is varied, the Kerr hysteresis loops are largely modulated. The CME coupling coefficient is estimated to be 8 × 10⁻⁶ s/m, which is comparable to that for *L*2₁-ordered Co₂FeSi/PMN-PT(001) (6.0 – 6.3 × 10⁻⁶ s/m) in our previous work [4]. This study will open a path for achieving the large CME effect for bcc Co₃Mn alloys that show a high TMR ratio.

The authors appreciate Professor Yoshihiro Gohda and Tomoyasu Taniyama for fruitful discussions. This work was partly supported by JST CREST, Grant Number JPMJCR18J1, JSPS KAKENHI Grant Numbers JP19H05616, JP20K21002, JP21K14196, and the Spintronics Research Network of Japan (Spin-RNJ).

[1] T. Taniyama, J. Phys. Condens. Matter 27, 504001
(2015). [2] K. Kunimatsu *et al.*, Appl. Phys. Express
13, 083007 (2020). [3] A. Z. Men'shikov *et al.*, Zh. Eksp. Teor. Fiz. 89, 1269 (1985). [4] T. Usami *et al.*, Appl. Phys. Lett. 118, 142402 (2021).

Fig. 1 (a) XRD profile of the Co₃Mn/Fe/PMN-PT(001) heterostructure. The triangle shows the diffraction peak of the bcc Co₃Mn(002). (b) Magneto-optical Kerr loops for the bcc Co₃Mn/PMN-PT(001) heterostructure at $E = \pm 1.5$ kV/cm at room temperature. The external magnetic field is applied along the PMN-PT[100] direction.