Growth of Au-doped Mn₄N epitaxial films: substrate dependence

1. Univ. of Tsukuba, 2. KEK

Takumi Horiuchi¹, T. Komori¹, T. Yasuda¹, K. Amemiya², K. Toko¹, and T. Suemasu¹ E-mail: s2220288@s.tsukuba.ac.jp

[Introduction] An antiperovskite ferrimagnetic Mn₄N film is a notable candidate for the domain wall motion devices thanks to its perpendicular magnetic anisotropy^[1] and small spontaneous magnetization ($M_{\rm S} \sim 100 \text{ kA/m}$)^[2]. In addition, we can control the properties of Mn₄N by replacing Mn atoms by another element such as Ni^[3].

This time, we focus on $Mn_{4-x}Au_xN$ epitaxial films. Li *et al.* previously reported that the epitaxial growth of $Mn_{3.5}Au_{0.5}N$ film on MgO(001) substrates and the sign reversal of anomalous Hall effect (AHE)^[4]. In this work, we grew $Mn_{4-x}Au_xN$ films on SrTiO₃[STO](001) and MgO(001) and researched their substrate dependences. The lattice mismatches between Mn₄N and these substrates are approximately -0.1% and -6%, respectively.

We fabricated [Experiment] 23-nm-thick $Mn_{4-x}Au_xN$ (x = 0.4 and 0.8) films onto STO(001) and MgO(001) substrates by molecular beam epitaxy. Crystalline quality was evaluated by ω -2 θ X-ray diffraction (XRD) and reflection highenergy electron diffraction (RHEED). The Hall effect measurements were conducted at room temperature with а physical properties measurement system (PPMS).

[Result] Figure 1 shows the XRD profiles and RHEED patterns of $Mn_{4-x}Au_xN$ on (a) STO(001) and (b) MgO(001) substrates. Except $Mn_{3.2}Au_{0.8}N$ on STO, we only observed peaks derived from $Mn_{4-x}Au_xN$ and substrates in the XRD profiles, and sharp streaks were observed in the RHEED patterns. The peak shift in XRD indicates that the lattice constant of $Mn_{4-x}Au_xN$ increased by Au doping. The crystalline orientation of $Mn_{3.2}Au_{0.8}N$ on STO is degraded compared to that of $Mn_{3.6}Au_{0.4}N$ due to the lattice mismatch between $Mn_{3.2}Au_{0.8}N$ and the substrate.

Figure 2 shows the anomalous Hall resistivity ρ_{AHE} of Mn_{4-x}Au_xN on MgO(001). We observed the sign reversal of AHE resistivity at x = 0.4 and 0.8. The results of X-ray circular magnetic dichroism will be discussed in talk to show the cause of this sign reversal.

[Acknowledgment] The measurements with PPMS were performed with the help of Associate Prof. T. Koyano of Cryogenics Division of Univ. Tsukuba.

[Reference]

- [1] Y. Yasutomi et al., J. Appl. Phys. 115, 17A935 (2014).
- [2] T. Gushi et al., Jpn. J. Appl. Phys. 57, 120310 (2018).
- [3] T. Komori et al., J. Appl. Phys. 127, 043903 (2020).
- [4] D. Li et al., Mater. Res. Bull. 122, 110646 (2020).

Fig. 2 ω -2 θ XRD profiles and RHEED patterns along [100] azimuth of Mn_{4-x}Au_xN on (a) STO(001) and (b) MgO(001)

Fig. 1 ρ_{AHE} of (a) Mn₄N, Mn_{3.6}Au_{0.4}N and (b) Mn_{3.2}Au_{0.8}N on MgO(001)