Multi－TW single－cycle laser based on the advanced DC－OPA

${ }^{1}$ Ultrafast Coherent Soft X－ray Photonics Research Team，RAP，RIKEN，
${ }^{2}$ Attosecond Science Research Team，RAP，RIKEN，
${ }^{3}$ Extreme Laser Science Laboratory，CPR，RIKEN

${ }^{\circ} \mathbf{L u ~ X u}{ }^{1,2}$ and Eiji J．Takahashi ${ }^{1,3}$
E－mail：lu．xu＠riken．jp；ejtak＠riken．jp

According to the＂cut－off＂law of high－order harmonic generation（HHG），it was evident that a driving laser with a longer wavelength was the essential requirement for extending the cut－off photon energy through the ponderomotive scaling．Moreover，the driving laser with a less－cycle can generate a broader HHG continuous spectrum，which gives the potential of creating an isolated attosecond pulse with a shorter pulse duration．Previously，a 100 mJ －class，sub－two－cycle，carrier－envelope phase（CEP）－ stable $1.7 \mu \mathrm{~m}$ laser was demonstrated［1］．In this paper，we further extended the center wavelength to $2.4 \mu \mathrm{~m}$ and energy scaled the output of the single－cycle laser source，where two kinds of nonlinear crystals $\left(\mathrm{MgO}: \mathrm{LiNbO}_{3}+\mathrm{BiB}_{3} \mathrm{O}_{6}\right)$ were combined in the dual chirped optical parametric amplification （DC－OPA）scheme．

As illustrated in Fig． 1 （a），the 4 mJ ， 25 fs pulses from a 1 kHz Ti：sapphire front－end laser are focused into a 1.6 bar krypton gas cell for spectral broadening via optical filamentation，followed by difference frequency generation（DFG）based on a 1 mm thick BiBO crystal with the cut angle at 65° for type－II phase matching in the X－Z plane．Thanks to the DFG，the CEP of the seed pulse $(1.4-3.1 \mu \mathrm{~m})$ is passively stabilized，and then，the seed pulse propagates in AOPDF to be given the suitable dispersion corresponding to the manner of DC－OPA（Fig． 1 （a））．To achieve more than one－octave bandwidth amplification in the DC－OPA，both type－ $\mathrm{BiB}_{3} \mathrm{O}_{6}$ with a cutting angle of 11° and type－ $\mathrm{MgO}: \mathrm{LiNbO}_{3}$ with a cutting angle of 42° were employed simultaneously，where the $\mathrm{BiB}_{3} \mathrm{O}_{6}$ crystal mainly amplifies the wavelength range from $1.4 \mu \mathrm{~m}$ to $2.3 \mu \mathrm{~m}$ and the $\mathrm{MgO}: \mathrm{LiNbO}_{3}$ crystal amplifies the wavelength range from $2.3 \mu \mathrm{~m}$ to $3.1 \mu \mathrm{~m}$ ．It should be noted that the amplification based on $\mathrm{MgO}: \mathrm{LiNbO}_{3}$ crystal is one step more than that based on $\mathrm{BiB}_{3} \mathrm{O}_{6}$ crystal，to compensate for the difference in quantum conversion efficiency during the amplification of different wavelength ranges．By taking full advantage of the pump energy（ 750 mJ ）and compression in the sapphire bulk（ $\phi 62 \mathrm{~mm} \times 40 \mathrm{~mm}$ ）， the final output laser pulses with spectrum centered at $2.44 \mu \mathrm{~m}$ ，pulse energy of 53 mJ and pulse duration of 8.58 fs were achieved（see Fig． 1 （b）），which resulted in a 6 TW， 1.05 cycle， 10 Hz ，CEP－ stable laser source．

Fig．1．（a）Multi－TW single－cycle laser system；（b）Compression results with a center wavelength of $2.44 \mu \mathrm{~m}$

Reference

1．L．Xu，B．Xue，N．Ishii，J．Itatani，K．Midorikawa，and E．J．Takahashi，＂100－mJ class，sub－two－cycle，carrier－ envelope phase－stable dual－chirped optical parametric amplification，＂Opt．Lett．47，（2022）．

