Building-cube 法に基づく有限体積法による粘性-超弾性解析

Visco-hyperelastic simulation with finite volume method based on building-cube method

西口浩司(名古屋大・工) 竹内 秀輔(名古屋大・工) 嶋田 宗将(神戸大・システム情報学) 勝又 稜平(名

古屋大・工) 干場 大也(名古屋大・工) 加藤 準治(名古屋大・工) Koji NISHIGUCHI, Nagoya University

Koji NISHIOUCHI, Nagoya University Shusuke TAKEUCHI, Nagoya University Tokimasa SHIMADA, Kobe University Ryohei KATSUMATA, Nagoya University Hiroya HOSHIBA, Nagoya University Junji KATO, Nagoya University

E-mail:kojinishiguchi@civil.nagoya-u.ac.jp

Unified Eulerian structure-fluid formulation is suitable for massively parallel simulation of complex-shaped material. However, it has not been applied to the simulation of viscoelastic material, which has many internal variables in conventional studies. Numerical simulations of viscoelastic material are essential for a wide range of engineering fields, such as a shock-absorbing structure. Considering the background above, we propose a unified Eulerian structure-fluid formulation with a visco-hyperelastic model in this study. The proposed method is verified by simulating the uniaxial tension test and shock-absorbing structure.

1. 緒言

オイラー記述に基づく固体解析¹⁾は,空間固定メッシュ中を固体が変形・移動する解法である.固体解析で 標準的な手法であるラグランジュ型有限要素法と比較し た場合,オイラー記述に基づく固体解析には,次の3つ の利点があると言える.

第一に、ラグランジュ型有限要素法のように計算メッ シュ破綻が生じないため、大変形や破断を伴う固体解析 に適している. 例えば既往研究では、鋼の高速衝突問題 ²⁾、鋼の高速切削問題³⁾,粘着剤の大変形問題⁴⁾などに 適用されている. これらの研究では, 空間離散化に主に 有限要素法が用いられており、部分的に有限差分法が用 いられている. 第二に、固体と流体の基礎方程式をオイ ラー表記に統一できるため、流体解析との連成が容易で ある. 既往研究では,有限差分法による流体-構造連成解 法 5)-7), セル中心有限体積法による流体-構造連成解法が 提案されている ^{8),9)}.第三に,空間固定の直交メッシュ を用いることにより超並列計算機環境で高い並列化効率 を得やすい点である. 著者らは, 階層型直交メッシュ法 の一種であるビルディング・キューブ法 10) を用いたセル 中心有限体積法による流体-構造連成解法^{8),9)}によって, 超並列計算機環境で高い並列化効率を得られることを示 した.

ただし、従来のオイラー型解法では、固体領域を VOF(Volume-Of-Fluid)法¹¹⁾などの界面補足法で表現 し、ひずみテンソル等の固体内部変数の移流方程式を解 く必要がある.つまり、高精度スキームを用いたとして も、移流計算による固体界面と固体内部変数の数値拡散 を避けることはできない.そのため、従来のオイラー型 解法では、粘弾性体や弾塑性体のように多数の内部変数 を有する固体材料モデルを精度良く計算することは困難 であった.

そこで著者らは、固体界面と内部変数の数値拡散を回 避するため、固体領域にマーカー粒子を配置したオイ ラー型セル中心有限体積法による構造-流体連成解析手法 ^{12),14)},線形弾性体解析手法¹³⁾を提案した.ただし、こ れらの手法^{?,12),13)}では、固体内部変数がひずみテンソル のみである超弾性体および線形弾性体への適用に留まっ ている.

以上の背景から,本研究では,著者らが開発した手法

^{12),14)}を基礎として、マーカー粒子を用いたオイラー型セ ル中心有限体積法による粘性-超弾性解析手法を提案する ことを目的とする.本手法の有用性を示すため、粘弾性 体(熱可塑性エラストマー)からなる衝撃吸収構造と空 気の連成解析に適用する.

2. 基礎方程式

2.1 連続の式と運動方程式の体積平均化

オイラー型解法で複数の物質を取り扱う場合,一つの 計算セルに複数の物質が存在し得る.そこで本研究では, 非圧縮性の仮定の下で固体と流体の基礎方程式を体積平 均化した方程式を用いる⁴⁾.

$$\nabla \cdot \boldsymbol{v}_{\text{mix}} = 0 \tag{1}$$

$$\rho_{\min}\left(\frac{\partial \boldsymbol{v}_{\min}}{\partial t} + (\boldsymbol{v}_{\min} \cdot \nabla)\boldsymbol{v}_{\min}\right) = \nabla \cdot \boldsymbol{\sigma}_{\min} + \rho_{\min}\boldsymbol{b} \qquad (2)$$

ここで、 $v_{
m mix},\,
ho_{
m mix},\,\sigma_{
m mix}$ はそれぞれ以下のように定義される.

$$\boldsymbol{v}_{\text{mix}} = \sum_{i=1}^{n} \phi_i \bar{\boldsymbol{v}}_i \tag{3}$$

$$\rho_{\rm mix} = \sum_{i=1}^{n} \phi_i \rho_i \tag{4}$$

$$\sigma_{\text{mix}} = \sum_{i=1}^{n} \phi_i \overline{\sigma}_i \tag{5}$$

式 (3)(4)(5) において, ϕ_i は検査体積中の物質 *i* の体積率 である.また,式 (3) における \overline{v}_i は物質 *i* の存在する領 域 Ω_i における v_i の体積平均値,式 (5) における $\overline{\sigma}_i$ は物 質 *i* の存在する領域 Ω_i における σ_i の体積平均値である. 本研究の数値計算においては,検査体積 $(x - \Delta x/2 \le \overline{x} \le x + \Delta x/2, y - \Delta y/2 \le \overline{y} \le y + \Delta y/2, z - \Delta z/2 \le \overline{z} \le z + \Delta z/2)$ は一つの計算セル, ϕ_i は一つの計算セルにおける物質 *i* の体積率に相当する.式 (1)(2) では,各物質の速度 v_i を 求めるのではなく,体積平均化された単一の速度場 v_{mix} を求める.さらに,式 (4)(5) の計算では,物質毎に体積 率 ϕ_i ,質量密度 ρ_i ,構成方程式を与える.

2.2 構成方程式

本研究では、固体の構成方程式としては Simo の粘性-超弾性モデル、流体の構成方程式としては非圧縮性ニュー トン流体を仮定する. Simo の粘性-超弾性モデルでは、次 式のように Cauchy 応力を等積変化項と体積変化項に加 算分解して定式化を行う.

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_{\rm iso} + \boldsymbol{\sigma}_{\rm vol} \tag{6}$$

ここで、下添え字 iso は等積変化項、下添え字 vol は体 積変化項を意味する.非圧縮性の仮定の下では、体積変 化項 σ_{vol} 、すなわち圧力は非圧縮性条件より決定される. 一方、等積変化項 σ_{iso} は一般化 Maxwell モデルにより次 式のように定式化される.

$$\boldsymbol{\sigma}_{\rm iso} = \boldsymbol{\sigma}_{\rm iso\,0} - \sum_{i=1}^{m} \boldsymbol{Q}_i \tag{7}$$

$$\frac{D\boldsymbol{Q}_i}{Dt} + \frac{1}{\tau_i}\boldsymbol{Q}_i = \frac{g_i}{\tau_i}\boldsymbol{\sigma}_{\text{iso 0}} \qquad (i = 1, \cdots, m) \qquad (8)$$

ここで、 σ_{iso0} は超弾性ユニットの Cauchy 応力であり、 Q_{α} は α 番目 ($\alpha = 1, \dots, m$)の粘性-超弾性ユニットの Cauchy 応力、 τ_{α} は緩和時間、 g_i は実験により定められ るパラメータ、D/Dtは物質時間微分演算子である.

3. 数值解析例

本手法の有用性を検証するため, Fig.1 に示すように, 粘弾性体(熱可塑性エラストマー)からなる衝撃吸収構 造と空気の連成解析に適用した.数値解析例の詳細は講 演会当日に紹介予定である.

参考文献

- Benson DJ. COMPUTATIONAL METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES. Computer Methods in Applied Mechanics and Engineering. 99(2-3), pp.235–394, 1992.
- Benson DJ. A MULTIMATERIAL EULERIAN FOR-MULATION FOR THE EFFICIENT SOLUTION OF IMPACT AND PENETRATION PROBLEMS. *Computational Mechanics*, 15(6), pp.558-571, 1995.
- Benson DJ, Okazawa S. Contact in a multi-material Eulerian finite element formulation. *Computer Methods in Applied Mechanics and Engineering*, **193**(39-41), pp.4277–4298, 2004.
- Nishiguchi K, Okazawa S, Tsubokura M. Multimaterial Eulerian finite element formulation for pressuresensitive adhesives. *International Journal for Numerical Methods in Engineering*, **114**(13), pp.1368–1388, 2018.
- Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y. Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. *Computational Mechanics*, 46(1), pp.147–157, 2010.
- 6) Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y. A full Eulerian finite difference approach for solving fluid–structure coupling problems. *Journal of Computational Physics*, **230**(3), pp.596–627, 2011.
- 7) Ii S, Sugiyama K, Takeuchi S, Takagi S, Matsumoto Y. An implicit full Eulerian method for the fluid-structure interaction problem. *International journal for numerical methods in fluids*, 65(1 - 3), pp.150–165, 2011.

a) 押し込み速度 5.0 m/s

b) 押し込み速度 10 m/s

Fig. 1 Numerical examples of shock absorbing structure at different compression speed

- 8) 西口浩司, 岡澤重信, 坪倉誠. 大規模並列計算に適した階層型直交メッシュ法による完全オイラー型固体-流体連成解析, 土木学会論文集 A2 (応用力学), 73-2, pp.I153–I163, 2017.
- Nishiguchi K, Bale R, Okazawa S, Tsubokura M. Full Eulerian deformable solid-fluid interaction scheme based on building-cube method for large-scale parallel computing. *International Journal for Numerical Methods in Engineering*, **117**(2), pp.221–248, 2019.
- Nakahashi K. Building-cube method for flow problems with broadband characteristic length. *Computational fluid dynamics 2002*. Springer, Berlin, Heidelberg, pp.77–81, 2003.
- 11) Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. *Journal of computational physics*, **39**(1), pp.201–225.1981.
- 12) 西口浩司, 岡澤重信, 坪倉誠. 非圧縮性固体-流体連成 解析のための陰的 Particle-in-cell 法. 土木学会論文集 A2 (応用力学), **74**(2), pp.I253–I263, 2018.
- 13) 西口浩司,嶋田宗将,大高雅史,岡澤重信,坪倉誠. ラ グランジュマーカー粒子を用いたオイラー型有限体積 法による圧縮性固体解析.土木学会論文集 A2 (応用力 学), 75(2), pp.1237–I248, 2019.
- 14) Shimada, T., Nishiguchi, K., Bale, R., Okazawa, S., Tsubokura, M. Eulerian finite volume formulation using Lagrangian marker particles for incompressible fluid-structure interaction problems. *International Journal for Numerical Methods in Engineering*, **123**(5), pp.1294–1328, 2022.