5-1

STRUCTURE AND CHARACTERISTICS OF MULTILAYER (GaAs-Al_xGa_{l-x}As) DOUBLE HETEROSTRUCTURE

INJECTION LASERS

by

I. Hayashi, M. B. Panish, P. W. Foy and S. Sumski Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey 07974

SYNOPSIS

Double heterostructure (DH) injection lasers, composed of three layers, $\text{n-Al}_{x}\text{Ga}_{1-x}\text{As}$, p-GaAs and p-Al $_{x}\text{Ga}_{1-x}\text{As}$, were reported by Panish et al. and Alferov et al. 2 At room temperature these DH lasers showed much lower threshold current densities (J_{th}) than any of the homostructure or the single heterostructure (SH) laser diodes. $^{3-6}$ In the best group of diodes, $J_{
m th}$ were as low as about 1 kA/cm² for fully internally reflecting modes and about 2 kA/cm² for Fabry-Perot modes. However, Al_xGa_{1-x}As has higher thermal resistance than GaAs. In order to obtain a high duty cycle or a continuous operation at high temperatures near room temperature, a multilayer structure was produced. This structure includes a thin ($\sim l\mu m$) p-GaAs active layer (second layer), a thin (1 ${\sim}2\mu\text{m})$ p-Al $_{x}\text{Ga}_{\text{1-x}}\text{As}$ layer (third layer) and a thin (1 ${\sim}2\mu\text{m})$ p-GaAs layer (fourth layer). The thin third layer provides a relatively low thermal resistance pass between the active region and a heat-sink which is attached on the top of the fourth layer while providing the required optical and carrier confinement. The purpose of the fourth layer is to produce a low resistance ohmic contact on the diode.

The fabrication and the characteristics of these multilayer structure laser diodes will be discussed.

- 3. I. Hayashi and M. B. Panish, J. Appl. Phys. 41, 150 (1970).
- 4. I. Hayashi, M. B. Panish and P. W. Foy, IEEE J. Quantum Elect. QE-5, 211 (1969).
- 5. M. B. Panish, I. Hayashi and S. Sumski, IEEE J. Quantum Elect. QE-5, 210 (1969).
- 6. H. Kressel and H. Nelson, RCA Rev. 30, 106 (1969).
- 7. M. B. Panish, I. Hayashi, P. W. Foy and S. Sumski, unpublished.

M. B. Panish, I. Hayashi and S. Sumski, Appl. Phys. Letters 16, 326 (1970).

^{2.} Zh. I. Alferov, V. M. Andreev, E. L. Portnoi and M. K. Trukan, Fiz. i Tekhnika Poluprovodnikov 3, 1328 (1969).