Digest of Tech. Papers The 7th Conf. on Solid State Devices, Tokyo, Sep. 1975

E-1-1 MACNETIC BUBBLE AND ITS COMPETING TECHNOLOGIES

OSAMU ISHII

Electrotechnical Laboratory Chiyodaku, Tokyo

Development of magnetic bubble domain memories will have completed their experimental stage within few years. However, from the user's point of view, several different technologies are also expected available for the similar purpose. Such technologies are CCD (charge coupled device), DOT (magnetic domain tip device), and electron beam addressed memories. They are characterized as block oriented random access memories ("BORAM") or "electronic disks". Semiconductor RAM and fixed/movable head disks are expected also competing because their cost-performance will continue remarkable improvement. Josephson junction devices and some kinds of optical memories are too early to decide their technical reality.

Table 1 compares the important parameters of these technologies for 1975. At this moment, cost and capacity of CCD, bubble and electron beam memories cannot estimate precisely on industrial base. However, these devices are expected two orders of magnitude cheaper than computer main memory and faster than rotating disk/drum devices. The cost per bit is mostly effected by the integration scale which means number of bits on a batch fabricated medium. Decreasing the power dissipation of a memory cell is needed for increasing areal storage density.

Among these technologies the "Winner" will be decided finally by their costperformance, which will have strong influence from not only their own development schedule but also wide industrial backgrounds of their fields.

References

- (1) N. Suzuki et al: IEEE Trans. Electron Device, ED-21 (1974) 73.
- (2) L. Altman: Electronics, 47 No.16 (Aug. 8, 1974) 91.
- (3) R. F. Fischer: IEEE Trans. Magn., MAG-7 No.3 (1971) 741.
- (4) J. Kelly: Computer 8 No.2 (Feb.1975) 32.
- (5) R. R. Martin et al: Computer 8 No.2 (Feb. 1975) 24.

(1) A SOS RAM CELL	(Teou pam)		NA NA		(2) 3% CCD 1 bit Cell			(3) Bubble Shifter	1 bit Cell		Permalloy	(4) Electron Beam	Storage Medium		Confile	Metal Metal	Silicon
Movable Head Disk	Track Random	Yes		30 x 10 ³	10	0.01	1010	ic Coating	tineous Media	3	108			echanical	File	ial	s, Head
Fixed Head Disk	Track	Y.		5 x 10 ³	10	0.1	108	Ferromagnetic Coating	Contineous Media	103	107			Electro-Mechanical		Commercial	Mechanics, Head
Electron Beam		No	No	3.0	10	(0.3)	(10 ⁷)	Silicon Base Capacitor	Metal (4) Pattern	102 (4)	4 × 10 ⁶	7.8 (4)		Beam- Electrical	ne)	nt	Beam
Bubble	Block Random	(Yes)		103	0.4	(0.3)	(107)	Ferromagnetic Garnet	Permalloy (3) Pattern	4×10^2 (3)	16k	10-3 *	2.5 x 10 ⁻² *	Electro- Magnetic	Fast Auxiliary (on-line)	Development	Speed,
8			Yes	102	2.0	(0.3)	(10 ⁷)	Silicon	Conductor (2)	4×10^2 (2)	16k	5	2.5		Fast A	Sample	Non-
MOS • RAM	Word Random	No	Ye	0.5	2.0	1.0	107	Sili	Conductor, (1) Diffusion	103 (1)	4k	40	20	Electrical	Main	Commercial	Large
em Memory Type	Type of Access	Archival	Volatile	Access Time (usec)	Transfer Rate(MHz/Channel)	Cost/bit (yen) 1975	Capacity (bits/unit)	Storage Media	Cell Structure	Cell Size (pm ² /bit)	No. of bits on a Medium	Power/bit (µ Watt)	Power x Delay (p Joule)	Access Method	Memory Hierarchy	Status at 1975	Technical Problems
Item			mance	اللا	a 'as	200 200			6	Сбото	Techn	ytce '	Der			squew s	COM