Digest of Tech. Papers The 8th Conf. (1976 International) on Solid State Devices, Tokyo

B-4-4

LED Pumped Lithium Neodymium Tetraphosphate Lasers

Masatoshi Saruwatari and Tatsuya Kimura Musashino Electrical Communication Laboratory N.T.T. Musashino-shi, Tokyo 180, Japan

Laser oscillation of lithium neodymium tetraphosphate (INP) crystal pumped with LED's is reported in this paper. A highly efficient miniaturized solid state laser is expected because the Nd concentration of LNP is about 30 times as high as that of Nd:YAG. Experimental results and theoretical considerations on LNP lasers, which are end- and side-pumped with Al_xGa_{1-x}As LED's are reported.

The experimental arrangements are shown in Figs. 1(a) and 1(b) for end- and side-pump schemes, respectively. The LNP crystal used for each pump scheme is a pseudoorthorhombic a-plate. Crystal thicknesses are 0.3 mm and 4.85 mm for end- and side-pump, respectively. The optical resonator consists of a plane mirror M_2 and a spherical mirror M_1 , arranged in hemispherical configuration. Both mirrors are highly reflective with more than 99.9% reflectivety at 1.047 µm. The main pump source is a dome-type $Al_xGa_{1-x}As$ LED, whose center wavelength is selected around 0.8 µm. A pair of condenser lenses (F= 0.71) are used for end-pump scheme.

Fig. 1 Experimental setup

With this system, 31% of the LED power can be focused on the LNP crystal. For the side-pump, a gold plated hemispherical reflector with 80% reflectivety at 0.8 µm is used as a pump scheme.

Experimental results show the temperature dependences of both LNP lasers pumped with an Ar ion laser, as is shown in Fig. 2. The characteristics of the threshold are expressed by the calculations based on the temperature dependences of the effective stimulated emission cross section and the round trip resonant loss originated in the thermalized population of the laser lower levels. The LNP laser oscillates

Fig. 2

at around -30°C at drive current of 290 mA for end-pump and 460 mA for sidepump. Threshold pump powers for end- and side-pump are 49 mW and 340 mW, respectively. From the estimations of the pump efficiencies ? associated with the LED output and the power absorbed within the oscillating mode volume, the experimental threshold pump powers fairly agree with the theoretical threshold calculations, as are listed in Table 1.

In order to reduce the LED power required to oscillate the LNP laser, pump efficiency improvement and LNP crystal homogeneity will be discussed. From the above estimations, LED pump power densities required to oscillate the LNP laser at room temperature are $35/W/cm^2$ and $8.5~W/cm^2$, and the required power densities to obtain a 10 mW output are 990 W/cm² and 30 W/cm² for endand side-pump, respectively. Table 2 summarizes the above results.

The authors wish to thank T.Yamada, K.Otsuka and J.Nakano for supplying high quality LNP crystals.

ጥ	0	ЪI	0	٦.
-	0	27	-6	-

Threshold Comparison

	(°C)	End-Pump		Side-Pump	
Sample Temperature		22	-35	22	-30
Absorbed Threshold for Ar Laser Pump	(mW)	0.056	0.016	8.3	1.8
Absorbed Threshold for LED Pump	(m₩)		0.0092		2.1
Theoretical Threshold	(mW)	0.023	0.0067	9.2	2.0

Note:

Ar laser pump threshold data are multiplied by wavelength ratio 0.5145/0.80.

TABLE 2

		End Pump	Side Pump	
LED Power	Pin	28 mW	88 mW	
LED Power Density	I _{in}	990 W/cm ²	30 W/cm ²	
Optimum Coupling Loss	Lto	8.5 x 10 ⁻³	3.4×10^{-2}	
Slope Efficiency	σs	0. 40	0.19	
Assumptions		2		
Crystal Length	٤	0.3 mm	4.85 mm	
Spot Size	Wo	30 µm	30 µm	
Round Trip Crystal Loss	Li	5.0×10^{-4}	8.1×10^{-3}	
Pump Efficiency	n	0.55	0.30	

LED Power Required to Obtain 10 mW Output at Room Temperature