Digest of Tech. Papers The 11th Conf. (1979 International) on Solid State Devices, Tokyo A — 3 — 8 Charge Pumping Memory with SOS-MOS Transistors

> N.Sasaki, M.Nakano and T.Iwai IC Division, Fujitsu Limited, Kawasaki 211, Japan

It has been presented that an SOS-MOS transistor can be a dynamic RAM cell by itself without any additional storage capacitor.¹⁾ The new memory cell is called the "Charge Pumping memory" (CP-memory) cell. In this paper, the CP-memory is described as a memory array and the selective READ/WRITE operations are validated. The CP-memory is suitable for a large scale high density RAM because it has such advantages as non-destructive readout and non capacitance-ratio problem as well as the simple cell structure.

The information of the CP-memory cell is stored in the floating substrate of an SOS-MOS transistor as a potential difference. READ is carried out by measuring the threshold voltage change (the substrate bias effect). WRITE 'l' is performed by charge pumping; the channel carriers are injected into the substrate and recombine there, resulting in the reverse-biased junctions at the source and drain. WRITE '0' is performed by the avalanche multiplication at a junction; the majority carriers are injected into the substrate.

The CP-memory test structures were made in a conventional p-channel selfaligned silicon gate process, using the (100) 1.0 μ m thick non-doped silicon epitaxial film on sapphire. The film was doped n-type by phosphorus ion implantation at 180 keV to 4×10^{12} cm⁻² through the gate oxide. The gate oxide thickness was 700 Å. The threshold voltage was 4 V.

A memory array of the CP-memory is shown in Fig.l. The selective operations were proved using a test CP-memory; both the channel length and width are 40 μ m. The voltages for the operations are summarized in Table I. For storage, the bit lines are kept at the power supply voltage V_{CC} and the word lines at zero volt. Information in a particular memory cell MC₁ is read when the selected bit line B₁ is set at zero volt and the word line W_1 is set at a readout voltage V_R , where V_R is larger than the threshold voltage and low enough to avoid charge pumping. The output voltage V_{OUT} corresponding to the drain current of the CP-memory cell was obtained as 6 mV or 18 mV, depending upon whether '1' or '0' is written. To write '1' in the cell MC₁, the bit line B₁ is set at zero volt and a charge pumping pulse V_{CP} is applied to the word line W_1 . Charge pumping at the cell MC₃ is excluded by keeping B₂ at V_{CC} . Figure 2(a) shows that '1' is written in MC₁ by the pulse V_{CP} and the '1' is measured by the pulse V_R . Whereas the '0' in MC₃ is not affected by the pulse V_{CP} , since B₂ is kept at V_{CC} , as shown in Fig.2(b).

-69-

To write '0' in MC_1 , every word line except W_1 is set at V_{CC} and an avalanche multiplication pulse V_{AVA} is applied to B_1 . The pulse height V_{AVA} is adjusted to a proper value to exclude the multiplication at the cell MC_2 whose gate voltage is aet at V_{CC} . Figure 3(a) shows that '1' written in MC₁ is changed to '0' by the pulse $\rm V_{AVA}$. Whereas the 'l' in MC_2 is not altered by $\rm V_{AVA}$ because W_2 is set at $V_{\rm CC}$, as shown in Fig.3(b). It should be noted that the non-destructive readouts of '1' and '0' are shown in Figs. 2(a) and 3(a), respectively.

The similar results were also obtained for the CP-memory test array shown in Fig.4; the channel length was 8 Jm and width 10 Jm. Reference

1) N.Sasaki et al. : 1978 IEDM Tech. Dig. (1978) 356.

Fig.3 Effect of the avalanche multiplication pulse.

-70 -