A Two-Josephson-Junction Memory Cell with Nondestructive Readout

I. Kurosawa and M. Nitta
Electrotechnical Laboratory
Sakura-mura, Niihari-gun, Ibaraki, Japan

Many types of NDRO Josephson memory cell have been investigated and developed. They are divided into two groups. One is a memory cell with an insulated sense gate which is part of an interrogate line. Therefore its structure is rather complex. The other is a single flux quantum NDRO memory cell with no sense gate. The NDRO operation is achieved by the asymmetric structure and the strong damping of the memory loop. And it requires a diagonal line in addition to X and Y lines.

A comparably simple NDRO Josephson memory cell has been proposed and tested. This cell with no sense gate consists of a planar superconducting loop with two Josephson junctions, a word line, a control line and a data line. Information can be stored in the memory loop with no bias current.

The equivalent circuit of this memory cell is shown in Fig. 1. The memory loop stores a persistent circulating current in the "1" state, or no current in the "0" state. The vertical word line A interconnects all memory loops of a column serially, and the horizontal control line B runs throughout a memory array. The control current \( I_b \) on line B decreases the critical current of each junction, however, does not make an inductive coupling with memory loop because the line divides the loop into two equal area. The horizontal data line C couples with the memory loop inductively.

In Fig. 2 is shown the threshold characteristics of this memory cell. The right and left of the abscissa represent the value of the data current \( I_c \) and the value of the control current \( I_b \) respectively. The ordinate represents the word current \( I_w \). The upper and the lower curves "0" are \( I_a-I_c \) curves with \( I_b=0 \) and that with \( I_b=I_B \) respectively. When the persistent circulating current corresponding to a "1" is stored in the loop, the \( I_a-I_c \) curves are shifted like the upper curve "1" ( \( I_b=0 \) ) or the lower curve "1" ( \( I_b=I_B \) ).

Writing information into the memory cell is accomplished by the coincident application of \( I_a=I_A \), \( I_b=I_B \) and the data signal on the line C. The coincidence of \( I_A \) and \( I_B \) switches both junctions into the voltage state independent of stored information. The application of the data signal \( I_c=I_W \) and subsequent removal of \( I_A \) and afterwards \( I_W \) make the persistent current in the loop ( writing "1" ). The same sequence with \( I_c=0 \) makes no circulating current ( writing "0" ).
Readout operation is performed by the coincident application of \( I_a = I_A \) and \( I_c = I_R \). If a "1" has been stored, the memory loop stays in the zero-voltage state \( ( \text{operating point is under} \ I_a - I_c \ \text{curve "1"} ) \), and the sensing voltage \( V_a \) is zero. If a "0" has been stored, the loop switches into the voltage state \( ( \text{operating point is over the} \ I_a - I_c \ \text{curve "0"} ) \), and the sensing voltage \( V_a \) occurs. NDRO operation is achieved by first removal of \( I_R \) and subsequent removal of \( I_A \). The memory loop returns to the zero-voltage state with no circulating current for the "0" state.

In this memory loop the number of flux quanta in the "0" state may fluctuate around 0, however in the "1" state (the memory loop stores magnetic flux \( n\Phi_0 \) ) \( n \) is about 100, so it is easy to distinguish the "1" state from the "0" state.

Fig. 3 is a microphotograph of the memory cell. Pb-Au-In and Pb-Au alloys are used to form the Josephson junctions.

In Fig. 2 bars indicated as \( \square \) represent the experimental results of a threshold curve and bars indicated as \( \Box \) represent the operational margin of the memory cell.

References
3) H. Beha, Electronics Letters, 13, 596, (1977)
4) Yamamoto and Ishida, Nikkei Electronics, No.224, pp.56-58, (Oct. 29, 1979)

![Fig. 1. Equivalent circuit of the memory cell](image1)

![Fig. 2. Threshold curves and driving pulses of the memory cell](image2)

![Fig. 3. Microphotograph of the memory cell](image3)