Digest of Tech. Papers The 13th Conf. on Solid State Devices. Tokyo

A-4-1 MBE-Grown GaAs/N-AlGaAs Heterostructures and Their Application to (Invited) High Electron Mobility Transistors

Satoshi Hiyamizu and Takashi Mimura Fujitsu Laboratories Ltd., 1015 Kamikodanaka, Nakahara-ku, Kawasaki, Japan

A high electron mobility transistor $(\text{HEMT})^{1-5}$ is one of the most promising candidates for post-silicon devices for application to future computers, since it shows excellent high-speed performance at an economically feasible temperature of 77 K. This is principally due to a characteristic feature of mobility enhancement of electrons at low temperatures in a MBE-grown selectively doped (SD) GaAs/N-AlGaAs heterostructure material of this device.⁴⁾

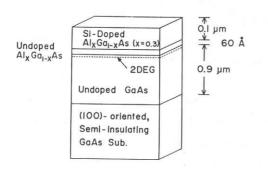

In this report, we describe electrical properties of high quality SD GaAs/ N-AlGaAs heterostructures grown by MBE and device characteristics of a recently developed HEMT.⁵⁾

Figure 1 shows a schematic diagram of an SD GaAs/N-AlGaAs heterostructure. Electrons originating in N-AlGaAs transfer to an undoped GaAs region and form quasi-two-dimensional electron gas (2DEG) accumulating at the heterojunction interface. Electron mobility parallel to the interface increased surprisingly with decreasing temperature as shown in Fig. 2 (together with data of sheet electron concentration), which is mainly due to spacial separation between electrons and their parent ionized impurities in this structure. We obtained mobilities of 8,030 cm²/Vs at 300 K, 117,000 cm²/Vs at 77 K and 244,000 cm²/Vs at 5 K with sheet electron concentration of about 4.9 x 10^{11} cm⁻². The mobility at 5 K is much higher than any yet reported for MBE-grown semiconductor materials including similar GaAs-AlGaAs heterostructures. Even at 77 K, electron mobility is almost 25 times as high as that of GaAs with a typical carrier concentration for MESFETS.

Figure 3 shows a structure of the cross section of an enhancement-mode HEMT with a short gate (gate length $L_{\rm G} = 2 \ \mu m$, gate width $W_{\rm G} = 300 \ \mu m$). The doping concentration of Si in N-Al_xGa_{1-x}As (x = 0.3, 0.06- μ m-thick) and n-GaAs (0.05- μ m-thick) layers was about 2 x 10¹⁸ cm⁻³. Current-voltage characteristics of the E-HEMT at 300 K and 77 K are shown in Fig. 4. An apparent increase in transconductance, g_m, was observed at 77 K even when the device was operated in the high electric field region (an average field in the gate region is about 4 kV/cm) where the velocity saturation effect could be significant in GaAs. The value of g_m was as high as 409 mS/mm (measured at V_{GS} = 0.7 V and V_{DS} = 1.5 V) at 77 K, which is, to our knowledge, the highest one reported so far for field effect transistors. Consequently, HEMTs have potential for application to high-speed and low-power dissipation intergrated circuits which would be almost comparable in performance with Josephson junction devices.

References

- T. Mimura et al.: Jpn. J. Appl. Phys. <u>19</u> (1980) L225.
 D. Delagebeaudeuf et al.: Electron. Lett. <u>16</u> (1980) 667.
- S. Judaprawira et al.: IEEE Electron Device Lett. EDL-2 (1981) 14.
 S. Hiyamizu et al.: Jpn. J. Appl. Phys. 20 (1981) 1245.
 T. Mimura et al.: Jpn. J. Appl. Phys. 20 (1981) L317.

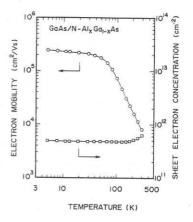


Fig. 1 Schematic diagram of a selectively doped GaAs/N-AlGaAs heterostructure.

Fig. 2 Electron mobility and sheet electron concentration in GaAs/N-AlGaAs versus temperature.

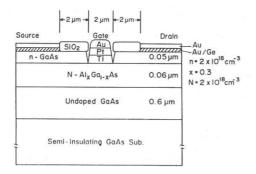


Fig. 3 Structure of the cross section of a short-gate E-HEMT.

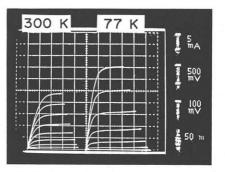


Fig. 4 Current-voltage characteristics of the E-HEMT at 300 K and 77 K: drain current I_{DS}, 5mA/div.; drain voltage V_{DS}, 500 mV/div.; gate voltage V_{GS}, 100 mV/step.