${
m B-6-3}$ Chemical Vapor Deposition and Characterization of Phosphorus-Nitride (P3N5) Gate Insulator for An Inversion-Mode InP MISFET Yukihiro Hirota, Takeshi Kobayashi, and Yoshitaka Furukawa Musashino Electrical Communication Laboratory, N.T.T. Musashino-shi, Tokyo 180

A new gate insulating film consisting of P_3N_5 was formed on an InP surface by a new CVD technique. This film is characterized by a constituent V column atom (P) which is also the constituent atom of the semiconductor substrate and by an oxygen-free compound. Very high resistivity (5x10¹⁵ Ω cm), ohmic

conduction at the electric field intensity up to $8 \times 10^6 \text{V/cm}$, surface state density as low as $2 \times 10^{12}/\text{cm}^2$.eV near the conduction band edge, and passivation effect to any alkaline and acid etchants are the characteristic features of the new insulating film. This paper demonstrates the $P_3 N_5$ CVD technique, the deposition temperature effect, the MIS interface and MISFET characteristics.

After in-situ HCl vapor etching for elimination of InP native oxide layer¹⁾, the reagents ($PH_3(10\% \text{ in } N_2):NH_3=1:1$) are introduced to the reactor system with three temperature zones as shown in Fig.1. Spatial separation of the deposition zone (Temperature: T_D) from the P_3N_5 synthesis zone (T_R) was effective to prevent the substrate thermal degradation, since it requires very high temperature above 860°C to obtain P_3N_5 . The T_B only affected the film deposition rate (90Å/hr at 860°C and 800\AA/hr at $900\,^\circ\text{C}$). On the other hand, the change in T_D resulted in remarkable changes in the quality of the insulating film and MIS interface characteristics.

Fig.2. J-E curves of P_3N_5 CVD film.

Coexistence of the ohmic conduction (for lower E) and Poole-Frenkel (higher E) conduction is seen in the J-E curves (Fig.2). The maximum field intensity E_0 for which the ohmic conduction dominates increases with T_D up to 500-550°C. Further increase in T_D , however, decreases E_0 . Highest E_0 of

 $8 \times 10^6 \text{V/cm}$ was obtained for T_{D} =500-550°C. It should be noted that, in the conventional CVD films on III-V compounds, Poole-Frenkel conduction covers the almost entire range of applied field.

The surface state density distribution, N_{ss} , over the band gap was estimated from 1 MHz C-V curve by using Terman method. Reduction of N_{ss} distribution was monotonic with lowering T_D (Fig.3). N_{ss} value of $2 \times 10^{12} / \text{cm}^2 \cdot \text{eV}$ is one order of magnitude lower than that of CVD Al_2O_3 -InP interface. The other effect of T_D on N_{ss} -Energy curve is a deformation of the so-called V shaped distribution: The curve became flatter with increased T_D .

Fig.3. Surface state density distribution.

Fig.4. Drain current I_d vs drain voltage V_d.

An n-channel inversion-mode InP MISFET was fabricated by using 700 Å thick P_3N_5 gate insulator (Fig.4). The effective electron mobility measured on this device was 1000-1640 cm²/V·sec.

At the conference, the drifting behavior of the MISFET and μ -wave characteristics will be also presented.

References

- Y. Hirota, M. Okamura and T. Kobayashi, J.Appl.Phys. 53,539 (1982).
- D. L. Lile, D. A. Collins, L. G. Meiners, and L. Messik,

Electron. Lett. 14, 657 (1978).