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Self-Consistent Calculations of Two-Dimensional Electron Density in
GaAs/Al Ga; - xAs Heterostructures
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Suita, Osaka 565, Japan

Sheet density of the two-dimensional electron gas in modulation doped GaAs/
Al _Ga;_.As heterostructures have been calculated self-consistently as functions of
the doping density in n- AlmGa2 As and the thickness of the un-doped Al Ga As layer
for x = 0.17 to 0.33 and lattlce temperatures at 4.2 and 77K. It is %ound that the
triangular approximation and other treatments reported so far will not give a good
result. Present results indicate that the penetration of the electron functions into
the un-doped Aleal_xAs layer plays an important role in determining the device

parameters.
§1. Introduction density of the two-dimensional electron gas (2DEG)
Recently, several kinds of GaAs/AlpGaj_gpAs in modulation doped GaAS/A%rGal_xAs heterostruc-
field effect transistors have been proposedlazs3), ture have been calculated self-consistently as a
which are fabricated with molecular beam epitaxy funection of the un-doped A%xGal_mAs for x = 0.17
tequniques. HEMT is the most famous among them, to 0.33 and lattice temperatures at 4.2 and 77K.
in which high switching speed and high electron The calculations were carried out by solving
mobility at low temperatures are achieved. Schrodinger equation and Poisson equation self-
In view of design of modulation doped GaAs/ consistently. The result show that the penetra-
Al,Gaj_,.As field effect transistors, it is impor- tion of the electron wave functions into the un-—
tant to know the properties of hetero-interface as doped Al,.Ga;_,.As layer plays an important role in
a function of doping concentrations in n type device parameters.
Al,.Gaj_,As layer. In order to analyse these pro-

perties, several methods, for example, the trian-

gular potential approximation or  variational §2. Self-consistent calculations

treatment), have been reported so far. Such me- Shown in Fig.l is the schematic diagram of a
thods, however, are not sufficient to provide a GaAs/A%rGaj_xAs heterostructure dealt with in the
satisfactory result because they neglect the present paper.

penetration of the electron wave functions into
the Al,.Gajy_,As layer. In other words, the assump-
tion of the infinite discontinuity of the conduc-
tion band edge at the hetero-interface is not
correct in this GaAs/Al,.Gaj_,As system.

We propose more refined analysis which utilize

ENERGY

self-consistent calculations by taking into
account the finite discontinuity of the conduction

bands at the interface. The method has been suc-

cessfully applied to the case of Si dinversion DISTANCE

layer to investigate electronic properties5) and

also adopted to study the two-dimensional system
Fig. 1 Schmatic sketch of the model of Al Ga., As

in GaAs/AQrGal_xAs heterojunctions6). The electron single hetero structure. 1-x
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We assume that this system is devided into three

regions which are denoted by I, IT, III. Region
I—xAs)

and GaAs layer which is undoped. Aleaj_xAs layer

IIT denotes spacer-layer (non doped Alea

in the region II is fully depleted and, thus, all
of the donor are ionized to supply the electrons
in the heterointerface resulting in forming 2DEG.
The conduction band edge, subband energies and
Fermi energy are measured from the conduction band
edge minimum. We have to note that the depletion
approximation will introduce an error in evalua-
ting the charge density in the region II, espe-
cially in the case of high donor densities. More
refined analysis in this region by Lee et 31.7) 5
where they wused Fermi-Dirac statistics for the
electrons captured by the donors and Ehrenberg
relation for the Fermi integral. In the present
work we used this refined method to solve Poisson
equation in this region and found that the results
give a good agreement with the depletion approxi-—
mation for higher donor densities as shown later.
In this paper, therefore, we report the results
calculated by the depletion approximation and more
refined analysis will be reported elsewheres).

Now we calculate the conduction band edge
¢I(z) in the region I by solving Poisson equation

given by

d ¢
"‘El" = 0 (1)
dz

where ¢I is the conduction edge potential measured
from the conduction band edge minimum at the
interface. Therefore conduction band edge in the

region I is given by
—e¢l(z) = Ef + ED (2)

where Ef is the Fermi energy and ED is the acti-
vation energy of n-Al,Gaj_pAs.
Conduction band edge potential ¢Di(z) in the

region IT is given by

d"¢ ex N
I D
_"'"'2_ T i e (3)

dz £

where N_ is the net donor demsity in n-Al_Ga, As
D x 1-x

layer and € is the dielectric constant of n-

AlgGaj-ghs. The boundary condition is given by

as
= -0 )
dz Z = —d1
_E¢E (_dl) = Ef + Ep (5)

Therefore, conduction band edge ¢H (z) and dits

first derivative are given by

eND 9
¢H(z) & (z+dl) +Ef+ED (6)
dé eN
1| S Pt d; ) (7)
dz £

In order to solve equilibrium state in area
III, we have to solve effective mass equation and
Poisson equation self-consistently. The envelope

function ﬁi(z) satisfies

hZ 32
S g —az—z + ¢ (2) Ei(Z)

Z

=E: 0.(2) (8

where m,, is the effective mass perpendicular to

the hetero interface. E% is given by

2
. +h 2 2
E, =E, - sz.(km+ky) (9)

where m; is the effective mass parallel to the

interface.
The potential ¢HI(Z) is written as
¢ﬂﬁ(2) = ¢0@(z) + ¢H(Z) + ¢xc(z) (10)

where ¢D and O(z) are the magnitude of the discon-
tinuity of the conduction band edge at the inter-
face and the step function, respectively. The

Hartree potential ¢H(z) is given by

2
a“e e [E.N.|z.(2)|° + N, (2) ]
mmw_ T z| (3 ‘ A (11)
dz £

where Ni (z) and NA(Z) are the subband electron
density and the net accepter demsity in GaAs la-

yer, respectively. Surface electron sheet density




NS is obtained from charge neutrality as follows.

Ng = NpZp- NgZg (12)

where Zp is the depletion width

2

of n-Al,Gaj_,As

layer. is the width of GaAs layer which is

given by

(13)

where Eg is the band gap of GaAs layer. And we

assumed that

GaAs

the accepter binding energy E; in

layer as dillustrated in Fig. 2 1is much

smaller than the band gap. The energy gap of GaAs

is given by

aTz
EQ(T) =E - — (14)
T+ B
where E,, & and B are 1.519(eV), 5.405 x 107%
(eV/K) and 204(K), respectivelyg).
Assuming the potential and its first deriva-
tive are continuous at z =0, we get Ny and Zj

from above equations as follows.

_ _ _2¢(0)
By =dy =g (16)
dz |z =0
E( dé )2
_ dz |z =0
Ny = 2e6(0) (430

§3. Results and discussion

Since the ionization energy of the donors in

n-Al,.Ga;_..As is not known well,
different 50, 100,

we assumed three

values, and 150meV for

the

present calculations. In this abstract we show

the self-consistent results on the hetero-

A
1-™8

and x =

structures with 603 un—doped A%rGa layer,
0.17

where the conduction band dis-

100meV donor ionization energy, to
0.33 at T = 4.2K,
continuity is assumed to be given by x in eV.
Figure 2 shows the electron densities in GaAs
as a function
0.33,

that

—xAS

in

of the donor density in n—A%rGal
for x = 0.30, 0,25 and 0.17.

Fig. 2

We find

the interface electron density dinc-
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reases with increasing the donor concentrations in

n—AlmGaI_mAs and with increasing the aluminium

contents X. Such a behavior is similar to the

result obtained from other methods but the abso-

lute values are not in good agreement due to the

fact stated above.
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Fig, 2 Electron density in GaAs vs. donor density

in n-AlgGaj_jAs with 604 spacer at T = 4.2K.
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Fig. 3

VS.

Self-consistent results of Fermi
doping density of AljGaj_pAs with
aluminium content x as a parameter.

energy
the

We present Fermi energies for the interface

electrons as a function of doping density in n-

A%xcaj_xAs. Fermi energy increases with increa-

sing the doping density due to the increase in the
electron density, where the Fermi energy is mea-
sured from the conduction band edge of GaAs at the

interface. It is found that the electrons are not



confined in the interface for a smaller value of
aluminium content x and for a large value of
doping density in n—AleaI_xAs. Therefore we
excluded such regions in Fig. 3.

Figure 4 shows the calculated depletion width
of n—AleaIHxAs as a function of the doping densi-
ty. Since the interface electrons are supplied

from the donors in the n_AleaI—mAS’ the depletion

width decreases with increasing the doping den-

sity.
a) x = 0.33
b) x = 0.30
c) x = 0.25
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Fig. 4 Self-consistent results of the depletion
width vs. doping density of Al,Ga;_,As with the
aluminium content x as a parameter.
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Fig. 5 The conduction band edge level in n-
Al,Gaj_pAs layer for Ny = 10122 Solid line:
Fermi-Dirac statistics; Dotted 1line: Depletion
approximation.

As pointed out earlier, the depletion approxi-
mation is expected not to give a satisfactory
result in the region II. We, therefore, solved
Poisson equation, using eq.(6) of reference 8, and

the resulting curve of conduction band edge in the

regions II and III are shown by solid curve in
Fig. 5 for N = l.OXIolzcm_z, where the result of
the depletion approximation is also plotted by
dashed curve. As seen in Fig. 5, we find no
noticeable difference between the two approxima-
tion methods. However, it was found that the
results for smaller wvalues of N, do not agree
wella).

In conclusion we present self-consistent cal-
culations of the 2DEG density as a donor density
in n~Alea1_xAs. The present results give a very
important information about the doping density and
the width of the n-Al Ga;  As required to get a
desired electron density in the GaAs layer and

thus a design principle of the HEMT.
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