The Electrical Effect of AlGaAs Barrier at the Heterointerface of Selectively Doped GaAs/N-AlGaAs Heterostructure

T. Ishikawa, J. Saito, S. Sasa and S. Hiyamizu

Fujitsu Laboratories Ltd.

1677 Ono, Atsugi 243-01, Japan

The effect of an interface potential barrier layer on the electrical properties of a selectively doped GaAs/N-AlGaAs heterostructure has been investigated. By reducing Al content in the N-AlGaAs layer (x = 0.15, 0.2) and introducing a 60-A-thick AlxGa1-yAs interface barrier layer (y = 0.3), high mobility of two dimensional electron gas, much reduced persistent photoconductivity, and low resistivity of ohmic contact were achieved in selectively doped GaAs/N-AlxGa1-xAs heterostructures grown by MBE.

1. Introduction

There has been an increasing number of reports on selectively doped (SD) GaAs/N-AlGaAs heterostructures and their applications to HEMTs. Most of them relate to a simple heterostructure, which compose of an undoped GaAs layer and a Si-doped AlxGa1-xAs (x = 0.3) layer. There are, however, some problems such as the large amount of persistent photoconductivity, high resistivity of ohmic contact in the SD GaAs/N-AlGaAs heterostructure. In this paper, we investigated a SD GaAs/N-AlGaAs heterostructure with an interface barrier layer in order to improve the electrical properties and light sensitivity of the heterostructure.

2. Electrical Properties

A schematic diagram of SD GaAs/N-AlGaAs heterostructure with an interface barrier layer is shown in Fig.1. It consists of a Si-doped N-AlxGa1-xAs layer (500-A-thick, Si-doping concentration Nd = 2x10^{18} cm^{-3}, x = 0.15, 0.2, 0.3), a 60-A-thick, undoped AlxGa1-xAs (y = 0.3, 0.4, 0.45) interface barrier layer (which works also as a spacer-layer) and an undoped GaAs layer (0.6-μm-thick). Four different GaAs/N-AlGaAs heterostructures with an interface barrier structure, as listed in Table 1, were grown on semi-insulating GaAs substrates at a temperature of 680°C by MBE.

2DEG mobility and sheet electron concentration at 77K of SD GaAs/N-AlGaAs heterostructures with an interface barrier layer are plotted as a function of AlAs mole fraction (x) in the N-Al_{x}Ga_{1-x}As layer, together with those of conventional SD GaAs/N-AlGaAs heterostructures which have not an interface barrier layer (Fig.2). The result obtained previous work (a) is also shown in the figure. Almost same results were obtained for the 2DEG concentration in both the conventional SD GaAs/N-Al_{x}Ga_{1-x}As heterostructures (x = 0.15, 0.2, 0.3, N_d = 2x10^{18} cm^{-3}, thickness of an undoped spacer-layer at = 60Å) and the interface barrier heterostructures. 2DEG mobility of a conventional

![Schematic diagram of a selectively doped GaAs/N-AlGa1-xAs heterostructure with an interface barrier of AlyGa1-yAs](image)

Fig.1 Schematic diagram of a selectively doped GaAs/N-Al_{x}Ga_{1-x}As heterostructure with an interface barrier of Al_{y}Ga_{1-y}As (a) and its composition profile (b). The values of x and y are listed in Table 1 also with electron mobility and sheet electron concentration.
SD GaAs/N-AlGaAs heterostructure decreased significantly with decreasing AlAs mole fraction as previously reported. It became as low as 2.0x10^4 cm^2/Vs at x = 0.15. It was speculated that this is mainly due to penetration of 2DEG wave function into the AlGaAs region because of low potential barrier height at the heterojunction interface. This penetration effect is expected to be much reduced by introducing high potential barrier at the heterojunction interface. In the case of the interface barrier heterostructures (y = 0.3), 2DEG mobility was much improved especially for x = 0.15 and 0.2, as is expected. This result proved the speculation of the previous paper that the penetration of 2DEG wavefunction into the AlGaAs region result in reduced 2DEG mobility in SD GaAs/N-AlGaAs with small value of x less than 0.2. For an SD GaAs/N-AlGaAs heterostructure (x = 0.3), the effect of an interface barrier layer (y = 0.4 and 0.45) on 2DEG mobility is not so clear. This indicates that the penetration of 2DEG wavefunction into AlGaAs region is much reduced and it is no longer a dominant factor for limiting 2DEG mobility when the potential barrier height is larger than about 0.3 eV.

Figure 3 shows the temperature dependence of electron mobility and sheet electron concentration of the SD GaAs/N-AlGaAs heterostructures with and without interface barrier layer (y = 0.3), and a conventional SD GaAs/N-AlGaAs heterostructure (x = 0.3). The mobility for the heterostructure of x = 0.15 without barrier was not improved significantly when the temperature was decreased. The sample with the barrier, however, exhibited much improved electron mobility at low temperatures (78,000 cm^2/Vs at 77K, 130,000 cm^2/Vs at 4K), and the over-all trend is very similar to that of the conventional SD GaAs/N-AlGaAs heterostructure with x = 0.3. Therefore, the interface barrier layer (y = 0.3) at the hetero-

<table>
<thead>
<tr>
<th>sample</th>
<th>x</th>
<th>y</th>
<th>mobility (cm^2/Vs)</th>
<th>sheet conc. (cm^-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0.15</td>
<td>0.3</td>
<td>77,000</td>
<td>4.4x10^11</td>
</tr>
<tr>
<td>#2</td>
<td>0.2</td>
<td>0.3</td>
<td>102,000</td>
<td>5.6x10^11</td>
</tr>
<tr>
<td>#3</td>
<td>0.3</td>
<td>0.4</td>
<td>110,000</td>
<td>5.7x10^11</td>
</tr>
<tr>
<td>#4</td>
<td>0.3</td>
<td>0.45</td>
<td>109,000</td>
<td>5.9x10^11</td>
</tr>
</tbody>
</table>

Fig. 2 2DEG mobility and sheet electron concentration in SD GaAs/N-AlGaAs heterostructure with (a) and without (b) an interface barrier at 77K as a function of AlAs mole fraction of an N-AlGaAs layer. The result of previous work is also shown by triangle.

Fig. 3 Temperature dependence of electron mobility and sheet electron concentration in SD GaAs/N-AlGaAs heterostructures (x=0.15) with and without an interface barrier, and a conventional heterostructure (x=0.3).
interface was found to be very effective in obtaining high 2DEG mobility for SD GaAs/N-AlGaAs heterostructure with the low AlAs mole fraction in the N-Al\textsubscript{1-x}Ga\textsubscript{x}As layer (x = 0.15, 0.2).

For device applications, a low AlAs mole fraction is preferred to reduce the ohmic resistance of the HEIT. Resistivity of ohmic contacts can be reduced about one order of magnitude by decreasing x from 0.3 to 0.2 at 77K in SD GaAs/N-AlGaAs heterostructures. Therefore, SD GaAs/N-Al\textsubscript{x}Ga\textsubscript{1-x}As heterostructure (x ≤ 0.2) with the interface barrier layer is promising to realize a low-ohmic-resistance HEIT.

3. Persistent Photoconduction

In this section, we will describe the photoconduction of the SD GaAs/N-AlGaAs heterostructure. It is well known that the sheet concentration of 2DEG of SD GaAs/N-Al\textsubscript{x}Ga\textsubscript{1-x}As heterostructure (x ≤ 0.3) increases considerably at low temperature (<100K) by exposure to light and increased 2DEG concentration persists even after the light is turned off. This persistent photoconductivity (PPC) has attracted much interest because it can have a profound effect on HEIT stability at low temperature. The PPC in the heterostructure is considered to be due to the so-called DX centers in the N-Al\textsubscript{x}Ga\textsubscript{1-x}As layer (x = 0.3)4. A DX center is assumed to be a donor-vacancy complex associated with large lattice relaxation5 and its concentration is proportional to the Si donor concentration6. Therefore, it seems to be very difficult to eliminate the PPC in the conventional SD GaAs/N-Al\textsubscript{x}Ga\textsubscript{1-x}As heterostructure (x = 0.3). We achieved low PPC in SD GaAs/N-Al\textsubscript{x}Ga\textsubscript{1-x}As heterostructure by reducing AlAs mole fraction in the Si-doped N-Al\textsubscript{x}Ga\textsubscript{1-x}As layer.

Figure 4 shows the amount of persistent increase of 2DEG concentration, \(\Delta n_s\), for SD GaAs/N-Al\textsubscript{x}Ga\textsubscript{1-x}As heterostructures after turning off the white light as a function of the AlAs mole fraction in the N-Al\textsubscript{x}Ga\textsubscript{1-x}As layer. The values of \(\Delta n_s\) were characterized by Van der Pauw-Hall measurement after a few minutes of turning off white light. Open circles (solid circles) correspond to the SD GaAs/N-AlGaAs heterostructures with (without) an interface barrier layer. The amount of PPC depended heavily on the AlAs mole fraction in the N-Al\textsubscript{x}Ga\textsubscript{1-x}As layer and became very small for x = 0.2 and 0.15. For the same value of x, the introduction of the interface barrier did not change the amount of PPC. Therefore, the SD GaAs/N-Al\textsubscript{x}Ga\textsubscript{1-x}As (x≤0.2) heterostructure with an interface barrier was found to be suitable for the preparation of 2DEG of high mobility and low PPC.

The dependence of PPC on the wavelength of light was measured. Fig.5 shows the persistent increase of current when the wavelength of light
was scanned from 2.0 μm to 0.5 μm at 77K. It is normalized by the value of dark current. In the conventional SD GaAs/N-AlGa1-xAs heterostructure (x = 0.3), the current increased considerably at around 1.1 μm, which is consistent with the photo-ionization energy of DX center. For the SD GaAs/N-AlGa1-xAs heterostructure (x = 0.15) with an interface barrier layer, however, the current increase in this region was very small with a gradual increase in the region 1.1 to 1.5 μm. Therefore, it is considered that there exist small amount of DX centers in the N-AlGa1-xAs layer (x = 0.15).

4. Conclusion

We obtained high mobility 2DEG in the SD GaAs/N-AlGa1-xAs heterostructure for low AlAs mole fraction of N-AlGa1-xAs layer (x = 0.15, 0.2) by introducing a 60-A-thick AlyGa1-yAs interface barrier layer (y = 0.3). This technique, which is easily implemented by MBE, provides a promising method to reduce PPC and ohmic resistance in SD GaAs/N-AlGaAs heterostructures.

Acknowledgement

The authors would like to express their thanks to K. Kondo for valuable discussions and also to T. Kotani, O. Ruzan, and T. Misugi for their supporting this work.

References