LPE SEPARATE CONFINEMENT InGaAsP/GaAs AND InGaAsP/InP DH LASERS WITH VERY LOW THRESHOLD

Zh.I.Alferov, D.Z.Garbuzov and I.N.Arsent'ev

A.F. Ioffe Physical-Technical Institute, USSR Academy of Sciences, Leningrad, USSR

It has been shown in [1,2] that DH laser with the active region thickness $d_{\rm a} \simeq 0.02$ µm can be prepared in a rotating variant of LPE. However, in these works the decrease of threshold current densities (I_{th}) in comparison with those typical to DH lasers with $d_{\rm a} \simeq 0.2$ µm was not obtained. In [3] with a method of liquid epitaxy, InGaAsP/InP DH lasers ($\lambda = 1.3$ µm)with separate confinement (SC) were fabricated with threshold for samples with four facets cleaved 512 A/cm at $d_{\rm a} = 0.05$ µm. This paper reports for the first time on the fabrication of low-threshold SC InGaAsP/GaAs LPE DH lasers (I_{th}= 260 A/cm², $\lambda = 0.85$ -0.79 µm) as well as on the achievement of threshold 300 A/cm² in similar SC InGaAsP/InP DH lasers ($\lambda = 1.25$ µm).

The calculations performed show that the reason for I_{th} to decrease with d_a decreasing in SC DH lasers may be the following:

1) the decrease of the threshold current component required to reach the inverse population; 2) the decrease of absorption losses in the active region especially significant in case of narrow-band gap InGaAsP/InP DH lasers. However, in narrow band lasers with d_a decreasing a relative role of Auger recombination increases and hence optimum values of d_a for these lasers may appear larger than for the wide-band gap InGaAsP/GaAs DH lasers.

The both types of laser structures described above were prepared by a usual LPE method in a modified sliding boat providing to produce InGaAsP layers of the given composition and doping, with thickness from 0.02 to 1 μm . Optimum parameters of laser structures were defined in the experiments on photopumping of isotype SC DH structures using a number of pulsed and continuous lasers (Nd+3, Ar+- and Kr+- lasers). For SC InGaAsP/InP DH in accordance with the data [3] minimum values of I_{th} were obtained in the structures with da \simeq 0.06 um and total thickness of both waveguide layers d \simeq 0.4 μm . P-n junction in these structures was produced by Zn diffusion to isotype N-n-N structure. The position of p-n junction coincided with the heteroboundary between up-

per InP-emitter and InGaAsP-waveguide layer. The lowest value of threshold current density in four facets cleaved lasers was 300 A/cm². Minimum threshold current was 25-30 mA.

In case of InGaAsP/GaAs DH, wide band emitters were made of n- and p-In_{0.49}Ga_{0.51}P doped by Zn snf Te during the growth process. Undoped In_{0.25}Ga_{0.75}As_{0.52}P_{0.48} waveguide layers and InGaAsP-active region have band gaps 1.7 and 1.43 - 1.57 eV, correspondingly. Lasers with best parameters were fabricated from the structure with $d_{a} = 0.02$ μ m. For four facets cleaved samples minimum Ith was equal to 260 A/cm2, and for usual broadarea lasers with cavity length L=500 $\mu m\text{,}$ the smallest Ith was 530 A/cm2. Threshold currents in samples of L ≥ 300 µm were small enough (as in case of four facets cleaved InGaAsP/InP lasers mentioned above) to obtain a continuous way operation for broad-area samples. In the laser of 310x140 pum the emitting power per one mirror at I = 1 A was 77 mW. In diodes with $\rm L$ < 500 um $\rm I_{th}$ increased linearly with 1/L; differential quantumefficiency (γ_d) increased with 1/L in the same samples. For a lser with $L=300~\mu m$ /d was 25% per one mirror within the interval (1.2-2.5) $I_{\rm th}$. Emission pulse power with pulse duration 100 nsec at I = 2.5 I_{th} was equal to 0.5 W and the total efficiency of electrical to light power conversion per two mirrors was 20%.

References

- 1. E.A.Rezek, R.Chin, N.Holonyak, S.W.Kirchoefer, R.M.Kolbas. J.Electron.Mater. Vol.9, pp.1-27, 1980.
- 2. R.Chin, N.Holonyak, Jr., B.A.Vojak. J.Appl.Phys.Lett., v.51, 8, p.4017-4021, 1980.
- 3. L.M.Dolginov, A.E.Drakin, P.G.Eliseev, B.N.Sverdlov, V.A.Skripkin, E.G.Shevchenko. Kvantovaya Elektronika (in Russian), v.11, No.4, pp.645£646, 1984.