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"Classical” concepts of mobility and diffusion constant, are

averages over time scales
sit times in submicron-scale devices,

long compared with tran-

and are therefore not

applicable to the simulation of devices of this scale. Monte
Carlo and Energy Transport methods are feasible for this

problem,

method from the Boltzmann equation is described,

however. The derivation of the energy transport

and typical

results of energy transport simulations of GaAs MESFETs and

Si MOSFETs are reviewed.

I. INTRODUCTION

As semiconductor devices are reduced in size,
the time scales in which they operate approach that
of the internal dynamical processes that determine
their behavior. However, the concepts of "mobi-
lity" or "saturation velocity" which have classi-
cally been used to describe electron transport
behavior are in fact averages over relatively long
times. Since these necessary averaging times may
exceed the transport time in a submicron-scale
device, these concepts are invalid for analysis of
such devices, and alternative approaches to their

simulation must be developed.

One such simulation approach is probabilistic-
ally based, and is appropriately called the Monte

Carlo (MC) method. In this method the electron

scattering processes in devices are directly simu-
lated, with weighted probability functions based on
the real material physics used to determine the
type of scattering process, time between scattering
events, and state after scattering. The Monte
Carlo method has been successful in simulating the
properties of bulk--essentially one-dimensional--
materials([1], and has also been applied to the
simulation of two-dimensional devices[2]. The
Monte Carlo method is relatively inexpensive for
materials calculations, but may become prohibitive-

ly expensive for the simulation of two-dimensional

devices.

An alternative approach, which has been called
the "energy transport" (ET) method is now growing
in popularity for device simulation due toc the
relative ease and efficiency with which it can be
used. The ET method does require more approxima-
tions to the real physics of devices than does the
MC method, but is a practical tool for the simula-
tion of submicron-scale devices of virtually any
material whose properties can be calculated using a
relatively inexpensive one-dimensional MC calcula-
tion. The ET method was originally used by Stratton
in an analysis of transport in Schottky barri-
ers[3], and has subsequently been applied to the
analysis of Gunn diodes([4], GaAs MESFETs[5], and Si

MOSFETs{6] and bipolar transistors[7].

II. FUNDAMENTALS OF THE ENERGY TRANSPORT METHOD

The ET method is based on the Boltzmann equa-
tion, which is in turn a phenomenological egquation
which incorporates conservation of mass, energy,
and momentum implicitly to describe the rate of
change of the distribution of particles in real and
momentum space. The distribution function is a
function of position, momentum, and time. Upon
solution of the Boltzmann equation, this distribu-
tion function must be integrated in order to obtain

such physically observable properties as energy,



velocity, or density, Therefore, the Boltzmann
eguation in its classical form yields the most

general possible descriptor of the system.

In the ET method, the Boltzmann egquation is
integrated before solution, and the guantities
solved for are the physical observables themselves,
Given at least some a priori information about the
nature of the distribution function, solution of
the integrated Boltzmann-derived equations--called
"moments" of the Boltzmann eguation--is relatively
simple. Different integral operators are used to
extract conservation equations for electron densi-

ty, momentum and energy.

The basic Boltzmann eguation

i
-(%‘f (rk;)*v{k)vrf(rk;)-%-V,V(r:)-ka(rkf)- k—a{- g (1)

where f is the distribution function in momentum-
energy space and E is the electric field, ismulti-
plied by the following operators and integrated

over k-space in turn:

n=<1> (2)
ny = <v(k)> (3)
nw = %— <lv(x)12> (4)

The following equations for particle, momentum, and

energy continuity, result:
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These equations incorporate the temperature tensor

T, the heat-flow vector Q, and the energy w, de-

fined as
LkgT = B <)@ -v)> (8)
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The approximation of constant effective mass
has been made in writing the eguations as above.
The set of three equations (5)(7) contains five

variables. To allow solution of the set of these

equations then, at least one thing must be known
about the distribution function. The usual state-
ment made is that the distribution function is

symmetrical, which leads to Q = 0, and produces a

diagonal temperature tensor T. In addition, if the
distribution function is taken to be isotropic, the
temperature tensor reduces to a scalar. Under
these conditions, equations (5)-(7) reduce to
functions of the three variables density (n), velo-

city (v), and energy (w).
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and the total energy is simply
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The system is taken to be in a steady state,
i.e., although the distribution function is itself
a function of time, that function of time does not

change with time.

Solution of egquations (11)-(13) is further
simplified if the kinetic energy of the drifting
electrons is assumed toc be negligible compared to
their thermal kinetic energy; and the electron
scattering processes are be described by energy-
dependent relaxation times. The relative magni-
tudes of thermal and kinetic energy may be checked
by calculation, but the use of relaxation times may
be more troublesome. The scattering processes of
importance in silicon, such as impurity and acous-
tic and optical phonon scattering, may be described
by relaxation times, but polar optical phonon scat-
tering, which is of major importance in compound
semiconductors at high fields, rigorously may not.
Hewever, if the electron energy is much higher than
the polar optical phoncon energy use of a scattering
time for this process is not a bad approximation
[8]. One dimensional calculations performed to
compare the MC and ET methods [2] do in fact show
good agreement in the initial stages of electron
acceleration, when electrons have not yet had time
to lose energy in intervalley scattering processes;

agreement is somewhat less good as time passes. In




the end, As we have noted elsewhere [5], the equa-
tions which result "provide a good engineering-
level description of the important hot electron ef-
fects in the device".

The energy-dependent relaxation times may be
obtained from onedimensional MC calculations. for
the properties of bulk material under the influence
of a uniform electric field. If devices in which
multi-valley transport phenomena occurs are to be
simulated (e.g., GaAs, or where gquantum electron
confinement is important) either separate equation
sets, 1in which the appropriate effective mass and
relaxation-time values for each valley are insert-
ed, or a model which uses gquantities averaged over
both upper and lower-valley electrons must be used.
In the latter case the fraction of the total elec-
tron population in each valley, a function of elec-
tron energy, may also be obtained from one-dimen-
sional Monte Carlo calculations, and the resulting

energy equation is
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An energy-dependent effective mass may be used
in the calculations at the cost of some additional
computing time. The incorporation of such energy
dependence may be justified in regions where elec-
trons can reach very high energies and where the
band structure is known with sufficient accuracy.
It is further not necessary to take the distribu-
tion function as symmetrical, in which case an
additional moment equation for Q would have to be
solved.

The subject of approximations in device simula-
tion calculations should, in any case, always be
viewed in the light of how well both the materials
and device parameters are known. The materials
themselves are often sufficiently variable, and de-
vice processing and measurement techniques yield
sufficiently ambiguous results, to make "enginee-

ring-level" formulations guite adequate.
ITI. EXAMPLES OF TWO-DIMENSIONAL CALCULATIONS

Calculations of the properties of both Si and
GaAs MESFETs may be simplified in certain cases by
making use of certain gqualitative features of the

electron dynamics of these devices as illustrated

by conventional two-dimensional simulations. The
features that have been used are (a): electrons
cannot be heated by the field in certain regions of
the device where the electrostatic potential is de-
pressed below the source potential by the charge
density; and (b) in regions where carrier heating
is significant both drift velocity and electric
field are almost entirely in the longitudinal di-
rection. As a result of these features, the car-
rier heating can be ignored entirely in certain
parts of the device, and the problem can be consi-
dered as primarily a one-dimensional one over the
remainder. Results using these simplifications
have shown good agreement with two-dimensional
Monte Carlo models, an electron-temperature hydro-
dynamic model, and with experiment(10].

The ET method has also been used to study elec-
tron heating along the surface of a short-channel
Si MOSFET, leading to a measure of the dependence
of gate leakage current on drain doping pro-
file[11], and a full two-dimensional ET MOSFET
analysis has shown that velocity overshoot should
play an important role in determining the behavior
of Si devices with channel lengths under about 0.5

micron and drain voltages over about two volts([6].

IV. CONCLUSIONS

The energy transport method can make two-
dimensional simulations of complicated submicron-
scale structures a reasonable and relatively eco-
nomical way of learning more about how they work,
and how they may be better designed. Solution of
the equations invelved may be done using standard
computer algorithms, and the approximations
involved in their solution are consistent with the
accuracy with which simulated device parameters are

usually known.
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