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I. INTRODUCTION

As semiconductor de.rices are reduced in size,

the time scales in which they operate approach that

of the internal dynamical processes that determine

their behavior. However, Lhe concepts of ttmobi-

Iity" or "saturation velocity" which have classi-

cally been used to describe electron transport

behavior are in fact averages over relativel-y Iong

times. Since these necessary averaging times may

exceed the transport time in a submicron-scale

device, these concepts are inval-id for analysi.s of

such devices, and alternative approaches to their

simulation must be developed.

One such simulatlon approach i.s probabil_istic-

ally based, and is appropriately ca1led the Monte

CarIo (MC) method. In this method the eleccron

scattering processes in devices are di-rectly simu-

Iated, with weighted probability functions based on

the real material physlcs used to determi-ne the

type of scattering process, time between scatterlng

events, and state after scatteri-ng. The Monte

Carlo method has been successful in simulatlng the

properties of bulk--essentially one-dimensional--

materials[1 j, and has also been applied to the

simulation of two-dimensionaL devices [ 2 ]. The

Monte CarIo method is relatively inexpensive for

materials calculations, but may become prohibitive-

Iy expensive for the simulation of two-dimensional

A-O-2

oev].ces.

An aLternative approach, whj-ch has been called

the "energy transport" (ET) method is now growing

in popularity for device simulation due Eo the

relative ease and efficiency with which it can be

used. The ET method does reguire more approxima-

ti-ons to the real physics of devices than does the

MC method, but is a practical tool for the simula-

tion of submicron-sca1e devices of virtually any

material whose properties can be calculated using a

relatively i.nexpensive one-dimensional MC calcula-

tion. The ET method was originally used by Stratton

in an analysis of transport i.n Schottky barri-

erst3l, and has subseguently been applied to the

analysis of Gunn diodes[4], GaAs MESFETs[5], and Si

MOSFETS{ 6l and bipolar transistors[7].

II. FUNDAMENTALS OF THE ENERGY TRANSPORT METHOD

The ET method is based on the Boltzmann equa-

tion, which is in turn a phenomenological equation

which incorporates conservation of massr energy,

and momentum iinplicitly to describe the rate of

change of the distributlon of partj.cles in real and

momentum space. The distribution function is a

function of position, momentum, and time. Upon

solution of the Boltzmann equation, this distribu-

tj-on function must be integrated in order to obtain

such physi-ca1ly observable properties as energy,
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velocity, or density, Therefore, the Boltzmann

eguation in its classical form yields the most

general possible descriptor of the system.

In the ET method, the Boltzmann eguation is

integrated before solution, and the quanti-ties

solved for are the physical observables themselves.

Given at least some a priori information about the

nature of the distrlbution functi-on, solution of

the integrated Bol-tzmann-derived equations--calIed

"moments" of the Boltzmann equation--is relatively

simple. Different integraJ- operators are used to

extract conservation equations for electron densi-

ty, momentum and energy.

The basic

9rtt *t)+v0<dt'

where f is th

energy space

plied by the

over k-space

n=11)

nv = 1v(k))

equations then, at least one thing must be known

about the distribution function. The usual state-

ment made is that the distribution function is

symmetrical, which l-eads to Q - 0, and produces a

diagonal temperature tensor T. In additj-on, if the

distribution function i-s taken to be isotropic' the

temperature tensor reduces to a scaLar. Under

these conditj-ons, eguations (5)-(7) reduce to

functions of the three variables density (n)r velo-

clty (v), and energy (w).
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The approxj-mation of constant effective mass

has been made in writing the equations as above.

The set of three equati.ons (5)(7) contains five

variables. To allow sol-ution of the set of these

and the total energy is simPlY

'I ..w:am v-+ (14)

The system is taken to be in a steady state'

i n - I f r-,^,rat-r r_he distribution f unction is itsel fI.9., dr LllUuYr! L

a function of time, that function of time does not

change with time.

Solutlon of equations ( 1 1 )-(1 3) is further

simpl ified if the kinetic energy of the drifting

el-ectrons is assumed to be ne91igi-ble compared to

their thermal kinetic energy; and the electron

scattering processes are be described by energy-

denendcnt rel axation times. The relative magni-

tudes of thermal and kj-netic energy may be checked

by calculation, but the use of relaxation times may

be more troublesome. The scattering. processes of

importance in silicon, such as impurity and acous-

tic and optical phonon scatterj-ngr may be described

by relaxation tj-mes, but polar opti.cal phonon scat-

teri-ng, which 1s of major importance in compound

semiconductors at high fieJ-ds, rigorously may not.

H6wever, if the electron energy is much higher than

the polar optical- phonon energy use of a scatteri.ng

time for thj-s process i-s not a bad approximatlon

t8l. One dimensional calcuLations performed to

compare the MC and ET methods [ 9 ] do in fact show

good agreement in the initial stages of electron

acceleration, when electrons have not yet had time

to lose energy in intervalley scattering processes;

agreement is somewhat Iess good as time passes. In

;.-T
1J

Boltzmann eguation
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e distribution function in momentum-

and E is the electric field, is multi-

following operators and integrated

in turn:

(2)

(3)
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lhe following equations for partlcle, momentum, and

energy continuity, result:
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These eguations incorporate the temperature tensor

T, the heat-fIow vector Q, and the energy w, de-

fined as
t 
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the end, As we have noted elsewhere [5], the equa-

tions whlch result "provj.de a good engineering-

level description of the important hot electron ef-

fects in the device".

The energy-dependent relaxation times may be

obtai-ned from onedirnensional MC calculations. for

the properties of bulk materlal under the influence

of a uniform electric field. If devices in which

multi-valley transport phenomena occurs are to be

simulated (e.9., GaAs, or where quantum electron

confinement is inportant) ei-ther separate eguation

sets, in which the appropriate effective mass and

relaxati.on-time vaLues for each valley are inserc-

€d, or a model which uses quantities averaged over

both upper and lower-valley electrons must be used.

In the latter case the fracti-on of the total elec-

tron population in each valley, a function of elec-

tron energyr may also be obtained from one-dimen-

si.onal Monte Carlo calculati.ons, and the resulting

energy eguation i-s

by conventional two-dimensional si_mulations. lhe

features that have been used are (a): electrons

cannot be heated by the field in certain regions of

the device where the electrostatic potentj.al is de-

pressed below the source potential by the charge

density; and (b) in regions where carrier heating

is significant both drift velocity and electric

, field are almost entirely in the longitudinal di-

rection. As a resul-t of these featu*es, the car-

rier heating can be ignored entirely in certain

parts of the device, and the probJ.em can be consi-

dered as primarily a one-dimensional one over the

remainder. Results using these simplifj.cations

have shown good agreement with two-dimensional

Monte Carlo models, an electron-tenperature hydro-

dynamic model, and with experiment t 1 0 l.

The ET method has also been used to study elec-

tron heating along the surface of a short-channel
ei MrtqtrF.n r 61ding to a rneasure of the dependencesv q trrEqJg.

of gate leakage current on drain doping pro-

fi1et11 l, and a fuIl two-dimensional ET MOSFET

analysj-s has shown that velocity overshoot should

play an i-rnportant role in determining the behavror

of Si devices with channel- lengths under about 0.5

micron and drain voJ-tages over about two volts[6].

TV. CONCLUSIOII.S

The energy transport method can make rwo-

dimensional simulations of complicated submicron-

scal-e structures a reasonable and relativeLy eco-

nomical way of Iearning more about how they work,

and how they may be better desi_gned. Solution of

the eguations involved may be done using standard

computer algorithms, and the approxirnations

lnvolved in thei.r solution are consistent with the

accuracy with which sj_mulated device parameters are

usual 1y known.

(1s)

An energy-dependent effective mass may be used

in the calculati-ons at the cost of some additional

computi.ng time. The incorporation of such energy

dependence may be justified in regions where elec-

trons can reach very high energj-es and where the

band structure is known wi.th sufflcient accuracy.

It is further not necessary to take the distribu-

tlon function as symmetrical, in which case an

additional moment eguation for Q would have to be

solved.

The subject of approximations in device simula-

tion calcul-ations should, in any case, always be

vj-ewed in the light of how well both the materj-als

and device parameters are known. The materials

themselves are often sufficlently variabJ-e, and de-

vice processing and measurement technigues yield

suf f ici-ent ly arnbiguous resul ts, to make "engi-nee-

ri-ng-level-" formulations guj.te adequate.

II]. EXAMPLES OF TWO-DIMENSIONAL CALCULATIONS

' Cal-cul-ations of the properties of both Si and

GaAs IvIESFETs may be simpLified in certain cases bv

mal<ing use of certain gualitative features of the

electron dynamj-cs of these devices as i1l_ustrated

', - !m'v2 + 1ot, +Gu(w)Lul
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