Extended Abstracts of the 17th Conference on Solid State Devices and Materials, Tokyo, 1985, pp. 9-12

Invited

A-0-3

Quantum Physics of 2D Electrons in Semiconductor Interfaces
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An overview of the recent progress performed in the last five years in the quantum
mechanical transport properties in two-dimensional (2D) electron systems in Si-MOSFETs
and GaAs/AlxGaj]_yAs heterostructures is presented. It includes weak localization and
negative magnetoresistance, quantum Hall effect and fractional quantum Hall effect.

§1 Introduction

Since 1979, a rapid progress has been made in
understanding of quantum mechanical properties of
electrical conduction in two-dimensional (2D)
systems in semiconductor inversion layers such as
in Si-MOSFETs and GaAs/AlxGa]-xAs heterostructures.
Main topics are weak localization and negative mag-
netoresistance, quantum Hall effect and fractional
quantum Hall effect.

In the present paper, fundamental concepts of
these phenomena will be reviewed.
§2 Weak Localization and Negative Magnetoresist-

ance

In 1958 Andersonl)

duction in disordered systems and predicted that

discussed the electronic con-

the quantum diffusion should be absent when the
disorder is large enough. Based on many author's
numerical studies of eigenstates in disordered

2)

systems and their system size dependences,
Abrahams, Anderson, Licciardello and Ramakrishnag)
proposed a scaling relation between the conduct-

ance g(L) of the system and the system size L as
g(l) = £(g(L'), L/L") (1

where f is a universal function. They write eq. (1)
in following form

Lined) - g(g()) @)

where B(g(L)) = {df(g(L),x)/d Mnx|x=1 }g(L). They
deduced the behaviour of B(g) from a general con-
sideration. In a macroscopic good conductor, we

can define the conductivity o(L) in d-dimensions
as g(L) = o(L) Ld-2 and o(L) is independent of L.

Therefore, we have an approximation of B = d - 2

- (ga/g) near the metallic limit (g + «). In 2D
systems, we can derive the following result from

B(g) = -g_/g and eq.(1):
g(L) = 8y ~ 8, an(L/Lg) 3)

where ga!Ln(L/LO)/gU < 1.
We have a result of perturbation calculation by
Gorkow, Larkin and Khmelnizkii&) as
2e2 L
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where % is Drude conductivity 9 = nezT/m and & =
VT is the electron mean free path.

The process of the perturbation calculation
shows that the correction term to the Drude con-
ductivity in eq.(4) comes frqm constructive inter-
ference between electron wave functions scattered

by impurities such as ¥y and Y_ This is the

4 K
weak localizatiom.

In actual 2D systems at finite temperatures,
each electron is scattered inelastically with in-
elastic scattering time Ty and makes a transition
from one localized state to another localized
state. In other words, electron wave functions
which construct a weakly localized state lose phase
coherence after an inelastic scattering, then the
electron is released from the localized state.
Therefore, we have to replace L in eq.(4) by LE =
/Dt_ where D = v ®1/2 is the diffusion coefficient
of electrons in two dimensions. Thus we have

e Te
0=00"HEHT (5)

When we apply a magnetic field B perpendicular to
the 2D systems, the phase in the electron wave

function changes by SeR-dr/h where X is a vector
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Fig. 1 Change in the conductivity Ac(B) versus
magnetic field B in an n-channel (100) Si MOFETS)

potential; B =79 x A. When we use the Landau
gauge for the vector potential, the change in phase
after an electron passes through a length R becomes
Ad = eBRZ/A. When A¢ becomes about unity the lo-
calization will be destroyed. For simplicity, we
define a length Lm = vK/eB . When we have Lm <
L., we have to replace L in eq.(4) by Lp. Then we
have an approximate formula for negative magneto-

resistance as

el
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Figure 1 shows experimental results of the

change in conductivity against the magnetic field

5)

observed in an n-channel S$i(100)-MOSFET ’ explain-

6) In

Fig. 1, the theory is fitted to experimental data

ed by Hikami, Larkin and Nagaoka's theory.
by adjusting t_ and a. o is a constant and depends
on the intervalley scattering time.

2D electron system in GaAs/AlyGal-xAs hetero-
structures has a spherical energy surface. There-
fore, negative magnetoresistance data can be ex-

7) 8)

plained only parameter T_. Kawabata's theory

9)

field region higher than Hikami et al's theory.

can explain experimental data™’ in a magnetic
Kawabata's theory can also explain experimental
data in Si-MOSFETs by adjusting T, and the inter-
10)

valley scattering time.

§3 Quantum Hall Effectll)
A classical expression for the Hall conductivi-

ty in 2D systems is given by

Nge g
o =_2 g RE (7)
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where Ng is the surface electron concentration, wg
= eB/m* and oy, is the diagonal conductivity. If
the magnetic field is strong enough and the tempe-
rature is low enough to satisfy the condition w,T
>» 1 and fiwe » kpT, there are well separated
Landau levels whose center are described by eyt =
(N' + %;}ﬁwc (N' = 0,1,2,+++). Each Landau level
can accomodate up to 1/2m22 = eB/h where & is the
radius of the ground Landau orbit. When Ng=veB/h
(v =integer) is fulfilled, we have GXX==0 because

no electron scattering exists in filled Landau

levels. Then, the Hall conductivity is given by
2
e
ny”—\)T. (8)

In 1975 Ando, Matsumoto and UemuralD calculated

Hall conductivity of 2D systems in a strong mag-

13)

netic field based on Kubo formula. They derived
a very important conclusion on the Hall conductiv-
ity in a case when impurity bands are separated

from mother Landau levels. They stated that egq. (8)
is valid when o

v eB/ h.

XX==O even if Ng is not equal to
This condition dis fulfilled in their
theory when the Fermi level lies in gap regions
among impurity bands and mother Landau levels for
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Fig.2 Hall conductivity oxy and diagonal conduc-
tivity oxx Vs %ate voltage Vg in the lowest four
Landau levels! » 15 Reference 14 contains
temperature dependence data.




Ng = veB/h. We can extend their conclusion one
step further to that eq.(8) is valid when gyy =0
in case when the Fermi level lies in the localized
states in lower and higher edges of any Landau

level. Figure 2 shows experimental results obtain-

ed in 1980 by Kawaji and Wakabayashi.la)
In 1980 von Klitzing, Dorda and Pepperls) made
a high precision measurement of Hall resistance
RH = VH/I and showed that RH==h/4e2 in accuracy of
3 ppm. They proposed that this is a new method
for the determination of the fine structure const—
ant a=p,c e2/2h. Since then the quantum Hall
effect has attracted attention of many metro-
logists and physicists.

16)

Laughlin derived eq.(8) by a general argu-
ment based on a thought experiment in a 2D looped
ribbon in which only lossless Hall current is cir-—
culating as shown in Fig. 3. 1In this system, a
vector potential A] along the ribbon can be changed
slowly by the change in magnetic flux ¢ with no
influence on B normal to surface on the ribbon.
The change in ¢ or Ay causes a change in the phase
of the wave function ¥ - Yexp(i2m ¢ /¢,) where ¢q =
h/e. For a localized state, the change in ¢ does
not affect the energy. If the state is extended,
however, after the change in ¢ by $ps the gauge
invariance is. satisfied and the system comes back
to its original state. But during this process,
the center coordinates of all extended electrons
shift by AY =2722/L. This means that electrons are
transfered from one Hall electrode to another and
the energy of the systems changes by AU = veVy
where v is integer including zero. The current I

is given by

RN T

I= T iy (9
Here, BAl shoud be replaced by AAl =h/Le and A3U
by AU = veV_,. Thus we have eq.(8).

H
Recent high precision measurements of quantized

Hall resistance in silicon MOSFETs by Yoshihiro et

1
al 7 =-E§ is
Xy ve
verified to be constant, i.e., the value corre-

show that the Hall resistivity p

sponding to h/e2 is unchanged against electron

Fig.3 Laughlin's looped
ribbon with circumferen-
ce L. Magnetic flux ¢
changes the vector poten—
tal A1 on the ribbon
without changing the
magnetic field B.

>0

concentration (for v = 4, 8,12), temperature (1.4K
v 0.5K) , magnetic field strength (9.0 T ~ 15T),
and channel current, to within one part in l07
when the measurement is made under the condition

pxx < (4/v) x 1072 q.

§4 Fractional Quatum Hall Effect

8)

In 1982 Tsui, Stdrmer and GOSSardl measured

o and p of GaAs/Al Ga, As (x =0.3) hetero-
XX Xy x X

structure interfaces withlu = (810) x ].04 cm2/
V+s in the field up to 21 T at 0.5 K and found a
plateau in pxyl;§ pxy = 3hj'e2 and a dip in P s’
Stormer et al observed in high mobility samples
clear dips in - at many fractional fillings of a
Landau level. Some of them show clear plateaus in
ny’ too. The fractional filling factors are v =
q/p where p is an odd integer and q is an integer.
Figure 4 shows our observations of the fractional
quantum Hall effect.zo)

Experimental results show that the fractional
quantum Hall effect can be observed only in high
mobility samples. This fact suggested that the
Coulomb interaction between electrons play the

Reviews on theoretical in-
21,22)

most impotant role.
vestigations are published. In the follow-
2

4 will be simply described.

When we use the Landau gauge for the vector

ing, Laughlin's theory

potential in the free electron Hamiltonian, we
have a solution described in a cylindrical coordi-
nate system (r, ¢). The wave function of the

ground Landau level contains a factor exp(-|z|?2/
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Fig.4 Magnetic field dependence of pyy at T=0.21
and 1.0Kand pyy at 0.21Kin a GaAs/AlxGa]l-xAs
heterostructure with very high mobility20 s



432) where z = x + iy. Laughlin constructed an
approximate wave function of an interacting N elec-

tron system for v = 1/p state Wl/p(zl,zz,-'-zN) as

Y =

1/p G

ﬁ (z.-z )P exp G—% |z, |2/422)
g 3K =1

The many body wave function must be antisymmetric
for exchange of electrons. Thus p is an odd
integer.

Laughlin found that the probability density
IWl/p(zl, zz,---zN){z calculated by eq.(10) has
the same form as a Boltzmann factor of a classical
one component 2D plasma consists of particles with
charge - p in a uniform positive background charge
1/2me2 at temperature T = p/kB. The charge neu-
1/2m82p.
2m82n =

trality requires particle density n =
Then, the filling factor is given by v =
1/p.
al plasma, Laughlin showed that the Coulomb energy

Borrowing calculated results of the classic-

of this state is smaller than the energy of the
Hartree-Fock calculation. Therefore, the Laughlin
state is the ground state separated by an energy
gap from the excited state.

When the filling factor has a small deviation
from 1/p, excess electrons or excess holes make
quasiparticles with fractional charges of ;e/p
other than the major Laughlin state. These quasi-
particles can be easily trapped by disordered sites
to form pxy plateau against a change in the mag-

netic field.

§5 Concluding Remarks

2D electron systems in solid state device play
very important roles in development of quantum
physics in electrical conduction in solids. The
negative magnetoresistance has made clear the
quantum mechanical nature of electron localization
and has developed a new tool to study microscopic
electronic processes. The quantum Hall effect has
shown the potential of a novel atomic standard of
resistance. The fractional quantum Hall effect
has shown a new electronic state where many body
effect is essential. It is interesting to note
here that disorders in material play an important
role in these phenomena. Advancement of material
technology in future will open fields in physics
which we cannot imagine at present
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