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Measurement of Mask Temperature Rise and Distortion in SR Lithography

T. Kaneko, M. Suzuki, A. Ozawa, and T. Ohkubo

NIT Atsugi Electrical Communication Laboratories

Atsugi-shi, Kanagawa 243-01, Japan

The results of experimental studies on temperature rise and thermal distortion
of X-ray masks in synchrotron radiation lithography are presented. A novel thermo
seasor to measure the mask membrane temperature rise induced by X-ray irradiation
is presented. Observations on a SiN mask with a 5x5mm? Au absorber in a vacuum
chamber show a temperature rise of 51 °C at the periphery and 94°C at the center at
146mi/cm® absorbed X-ray power,and radial elongation of 0.8 sm /8 mm at 196mh/cm?

absorbed X-ray power.

1. Introduction

Lithography using Synchrotron radiation(SR),a very
powerful and naturally collimated X-ray,is one of the
most promising fine-pattern replication technologies.
This technology, however,has the problem of X-ray mask
thermal distortion, which was discussed theoretically
in previous papers. !’ ®

Recently, the temperature rise of an X-ray mask
frame was measured by a thermocouple® ,and the mask
thermal distortion was measured by double exposure.*
However, the relationship between the temperature rise
of the mask membrane and the mask thermal distortion
has not been studied experimentally.

This paper proposes a thermo sensor to measure the
temperature rise of X-ray mask membranes and presents
the measurements of the X-ray mask temperature rise by
SR irradiation,as well as the mask thermal distortion
induced by the temperature rise during exposure in a

vacuum environment.

2. SR Exposure Conditions
The beam line BL-1B at the Photon Factory (2.5GeV

electron energy) was used with SR is deflected by 2 °
using a flat SiC mirror to eliminate the hard X-ray.

To eliminate VUV components,a Ti(0.54m) coated 7.5
#m thick Polyimide window was used. The calculated SR
spectrum is shown in Fig, 1. The spectrum of SR to
expose the mask peaks at TA and is suitable for litho-

graphy. An X-ray mask in a vacuum chamber (10 ~® torr)

was set 3lm away from the SR source. In this condition,
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Fig. 1 The calculated SR spectrum

in the measurement.

the total x-ray power density on the mask surface is
calculated to be 50mW ,~cm? in the Ti(0.5 &m) coated
7.5 #m thick Polyimide window at 100 mA ring current.

3. Thermo Sensor

A novel thermo sensor was devised to measure the
temperature rise of the mask membrane. This thermo
sensor was fabricated on a mask membrane to measure the
mask temperature rise using the temperature dependence

of metal film's electrical resistance on the X-ray mask
membrane,

A thermo sensor pattern fabricated on a SiN
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Fig. 2 A thermo sensor pattern

fabricated on a SiN membrane.

membrane (2 #m thick) is shown in Fig. 2. Evaporated
Au film was used as the electrical resistance film.The
thermo sensor was a 150 #m wide, 0.4 #m thick Au line
surrounding a 5x5 mm® exposure area. The space between
the thermo sensor and exposure area was 100 zm.

Two types of model X-ray masks, each with a thermo
sensor, were made; Type A with the exposure area covered
by 0.4#m thick Au as X-ray absorber,and type B with no
Au film in the exposure area. To calibrate the charac-
teristics of thermo sensors,model X-ray masks were set
in a constant temperature furnace and the temperature
dependence of their electrical resistance was measured
by the four-terminal method.

The calibration characteristics of some of the
thermo sensors are shown in Fig. 3. Electrical resis-
tance increases linearly with temperature in both types.
The thermo sensor sensitivities are estimated to be

40.2 mQ,7°C (Type A) and 37.9 m Q,°C (Type B).

4. Measuring Mask Temperature Rise

The model X-ray mask having a thermo sensor on it
was set behind a 5xSmm? aperture, and was exposed by
SR irradiation in a vacuum chamber. The mask membrane
temperature was measured in the steady-state condition
by the four-terminal method.

The mask membrane temperature rise dependence on
the ring current is shown in Fig. 4. Mask membrane
At

100 mA ring current, the temperature rise at the peri-

temperature rises linearly with the ring current.

phery of the 5x5 mm® exposure area is estimated to be
15°C in Type A and 8°C in Type B.

SR is efficiently converted to heat at Au layer.

In Type A ,incident
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Fig. 3 The calibration characteristics
of thermo sensors.
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Fig. 4 The temperature rise in the SiN
mask irradiated by SR.
(1)Ring current dependence.
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Fig. & The temperature rise in the SiN
mask irradiated by SR.
(2)X-ray filter transmittance
dependence.
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Therefore, Type A shows greater temperature rise.

The relationship between the temperature risg and
X-ray filter transmittance ( SiN 2¢m thick film and
Al Sum thick film) is shown in Fig. 5.

temperature rises linearly with the X-ray filter

Mask membrane

transmittance.
Mask temperature rise depends on SR power density
irradiating the mask as shown in Fig.4 and Fig.5.
In a vacuum, the heat distribution mechanism of
mask membrane depends on the thermal conduction in the
SiN membrane (thermal conductivity 0.14W/m

as the thermal radiation.

C) as well
Bearing this in mind, the
temperature rise distribution of the mask membrane
exposed by SR irradiation was derived theoretically.?
Experimental results and theoretical values?®
at the periphery of the exposed area at 100mA ring
current are shown in Table 1. Experimental results
agree with theoretical values. These results show
that the novel thermo sensor is a powerful tool to
measure the temperature rise of mask itself.
Using measurement values, the temperature rise at
the center of the exposure area is estimated to be 28 C

in Type & and 11 °C in Type B at 100mA ring current.

Table 1  SiN mask temperature rise at the
periphery of the exposed area.
(ring current 100mA)
Thermo Filter Exposed power Absorbed power Temp. rise ( C)
sensor (gm) (mH/cm?) (mk/cm?) T
calcu, calcu. Experi. | Theory

(=== 50 43 15 15
Type A SiN 21 23 8 8
(Au+SiN) 2)

41 10 | 9 4 3

(5
Type B —_— 50 23 6 8
(SiN)

5. Mask Thermal Distortion
To estimate the mask thermal distortion, the one
In this

model, both edges of the mask membrane are fixed dynami-

dimensional model shown in Fig. 6 was studied.

cally and a part of the mask membrane is exposed by
uniform SR irradiation. The thermal distortion (dis-

placement) Al at the boundary of the exposure area is

Al =

axAt x(aXxXb)/(a

+b)
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Fig. 6 Mask thermal distortion model.
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Fig. 7 The X-ray mask pattern for
measuring the thermal
distortion.

where « is the thermal expansion coefficient of the
mask membrane, At the temperature rise,2a the exposure
area, and b the non exposure area.

The X-ray mask for measuring the mask thermal
distortion is shown in Fig. 7. The X-ray mask has
a 8 %8 mm? exposure area and 16%16mm® SiN mask

2.5x10 "¢/ ).

was measured using 0.7 4m width cross patterns in an

membrane area(& = Mask distortion
exposure area covered with 0.64m thick Ta absorber.

Assuming an average 90 C temperature rise of
this mask, the mask thermal distortion is estimated
to be 0.4 ~0.5 um.

6. Measuring Mask Thermal Distortion

Two methods were adopted to measure the mask
distortion induced by the temperature rise.

One involved a double exposure using the same
X-ray mask. In exposing resists,at first, X-ray
resist was exposed by low level power and then the
same mask-wafer set was exposed by high level power.

SR is deflected by 2° using a Pt coated flat SiC



mirrow and transmitted on a 10#m thick Be window.

At 100mA ring current high level exposure, the temp-
erature rise of the X-ray mask was measured to be 51°C
at the periphery. Using this value, the temperature
rise of 94°C was estimated at the center of the expose
area. The absorbed X-ray power is estimated to be
146ml/cm®. Low level power was achieved adding a 50um
thick polyimide filter. The SR power ratio of high
level to low level was T:1. Double exposure resist
patterns were observed by SEM. The mask distortion
measured at 134 mA ring current (196mw/ enf absorbed
X-ray power density) is shown in Fig. 8. The mask
distortion had a magnitude of (0.4 um at the periphery
of the 8x8mm? exposure area.

The other method involved measuring resist pattern
positions by laser micro-pattern analyzer. By comparing
the resist patterns exposed by high and low level power,
a 0.4 gm radial elongation of the mask was confirmed.

Observed thermal distortion values agree with

expected values.

7. Conclusions
Qur studies on the temperature rise and thermal
distortion of X-ray masks in synchrotron radiation
lithography resulted in the following :
(1) A mask membrane temperature measurement method was
developed. Measured values agreed with theore-

tical values. Temperature rise of SiN mask with a

2mm

4 pm

1

deformed by temp. rise ">1 AX
original  4Y
/ L

5x5mm? Au absorber by 146mk/cm® absorbed power
density SR irradiation was averages 80~90°C during

exposure in a vacuum envireonment,

(2) Mask distortion caused by SR irradiation was
measured using a double exposure method and laser
micro pattern analyzer. At 196mW/cm® absorbed X-ray
power,0.8 #m/8mm mask elongation was observed
during exposure in a vacuum environment. This
suggests the needs for temperature control of the
mask to achieve highly accurate pattern registration.
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