B-2-7 LN

Epitaxial Growth of $\mathrm{Al}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{N}$ by MOVPE

> Y.Koide,H.Itoh,N.Sawaki, and I.Akasaki

Department of Electronics, School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464

> M. Hashimoto

Toyota Central R\&D Laboratories Inc., Nagakute-cho, Aichi 480-11

Wide band gap semiconductor GaN and A1N have attracted much attention as the materials for optical devices in short wave length region. However, very little work on the solid solution $\mathrm{Al} \mathrm{Ga}, \mathrm{N}$ has been reported. This is almost an ideal alloy system because both ${ }^{1-X} G a$ and $A 1$ have nearly the same covalent radius. In this paper, we report the epitaxial films of $A 1 \mathrm{Ga}_{1-\mathrm{x}} \mathrm{N}$ grown on sapphire(0001) and $\operatorname{Si}(111)$ substrates by MOVPE using TMG, TMA ${ }^{1}$ and NH_{3} as source materials with an ambient H_{2} gas of normal pressure. These organometallic compounds react with NH_{3} at room temperature and form complex addition compounds [1], [2], which make this method much complicated. In order to reduce these parasitic reactions, as shown figure 1,organometallic compounds and NH_{3} were mixed just before the reactor and were fed through the delivery tube to the substrate with the velocity of the gas stream being $110 \mathrm{~cm} / \mathrm{sec}$. This enabled us to control the solid composition of $A 1 \mathrm{Ga}_{1-\mathrm{x}}^{\mathrm{N}} \mathrm{f}_{\mathrm{V}} \mathrm{fairly}$ well. Figure 2 shows a plot of the alloy composition x versus $x^{x}{ }^{1-x} X^{v}$; where $X=[T M A] /([T M G]+[T M A])$ i.e. the ratio of the TMA to total group 111 input. The Al distribution coefficient defined as x / X^{V}, was found to be near to unity and was insensitive to the substrate temperature and the kinds of substrates

Figure 3 shows the RHEED patterns of $\mathrm{Al}_{0.1} \mathrm{Ga} .^{\mathrm{N}}$ grown on (0001) sapphire for the azimuth [15 10] (fig. 3a) and [10 $\overline{1} 0]\left(f i g .{ }^{1} 3 b\right.$): The RHEED patterns showed that single crystal films had been obtained with alloy composition $0 \leq x<0.4$ at substrate temperature $1020^{\circ} \mathrm{C}$ on sapphire and $1050^{\circ} \mathrm{C}$ on Si substrate: the crystals were of wurtzite type as expected and c-axis was aligned normal to the substrate surface.

The lattice constant of $\mathrm{A} 1_{\mathrm{X}}^{\mathrm{Ga}}{ }_{1-\mathrm{x}} \mathrm{N}$ films grown on sapphire, was measured double crystal X-ray diffraction ${ }^{x}$ for $^{1-x}$ the (0006) planes. Figure 4 shows the lattice constant C as a function of alloy composition x. From the figure, it is clear that C decreases linearly with the alloy composition satisfying Vegard's law, which holds in many $111-\mathrm{V}$ alloys but contradicts the results for samples prepared by MBE [3]. This contradiction will be considered to be concerned with the difference of the growth method.

In conclusion, epitaxial layers of $\mathrm{Al} \mathrm{Fa}_{1-\mathrm{x}} \mathrm{N}$ were grown on sapphire(0001) and $\mathrm{Si}(111)$ substrate by MOVPE. By reducing the parasitic reactions of organometallic compounds with NH_{3}, the alloy composition of $\mathrm{Al} \mathrm{Ga}_{1-\mathrm{N}} \mathrm{N}$ layers could be controlled fairly well. Single crystal films were ob爻aineđ up to $\mathrm{x}=0.4$ at substrate temperature $1020^{\circ} \mathrm{C}$ on sapphire and $1050^{\circ} \mathrm{C}$ on Si substrate. The change of the lattice constant was proportional to the alloy composition.

The authors wish to thank Dr.Y. Toyoda of Matsushita Electric Ind.Co. for his help in the measuring of the lattice constant using double crystal X-ray diffractmetry and for his valuable discussions.

reference

[1] H.M.Manasevit,F.M.Erdamann, and W.I.Simpsons
J.Electrochem.Soc. 118(1971)1864
[2] M.Morita,N.Uesugi,S.Isogai,K.Tsubouchi, and N.Mikoshiba
Japan.J.App1.Phys. 20 (1981)17
[3] S.Yóshida, S,Misawa, and S,Gonda J.App1.Phys. 53(1982)6844

Figure 1 Schematic diagram of growth apparatus.

(a) $[1 \overline{2} 10]$

(b) $[10 \overline{1} 0]$
 the azimuth [1210](a) and [1010](b).

Figure 2 The alloy composition of A1 Ga ${ }_{1-\mathrm{N}} \mathrm{layer}$ versus vapor composi-xion X^{v}, at different temperature. (o: $1020^{\circ} \mathrm{C}, \Delta: 1120^{\circ} \mathrm{C}$ on sapphire, \bullet : $1050^{\circ} \mathrm{C}$ on Si)

Figure 4 Change of the lattice constant C with the alloy composition x of $\mathrm{Al} \mathrm{Xa}_{1-\mathrm{x}} \mathrm{N}$ films grown on sapphire
at $1120^{\circ} \mathrm{C}$.

