A New MOS-Gate Bipolar Transistor with Fast Switching Speed and High Current Capability

T. Tanaka, Y. Yasuda, M. Ohayashi, M. Okamura
Hitachi Research Laboratory, Hitachi Ltd,
4026 Kujimachi Hitachi Ibaraki 319-12, Japan

Abstract

A new monolithic integrated power device called the MOS-gate transistor (MGT) which consists of a bipolar transistor for an output stage and two MOSFET's for a driver stage is described. The MGT devices with 400V blocking voltage were fabricated. High current density of 90A/cm² at collector-emitter voltage of 2V, and short turn-off time of less than 1 μ s were obtained. This device has no parasitic thyristor, so that the device is free from the latch-up phenomenon.

1. INTRODUCTION

Ideal power switching devices should have characteristics of a low on-state voltage, a fast switching speed and a small gate input power to be supplied by trigger circuit. In spite of many works to approach the ideal power switch, the conventional devices, such as bipolar transistors (BJT), gate turn-off thyristors (GTO), power MOSFET's do not satisfy the requirements completely. Drawbacks of those devices are a low switching speed and a large input power for the bipolar devices (BJT, GTO), and a high on-state voltage for the MOSFET's. Recently. the Insulated Gate Transistor(1) (or COMFET(2) or Bipolar-mode MOSFET⁽³⁾) has been proposed. This is regarded as a functionally integrated device which consists of an nMOSFET and a pnp transistor⁽⁴⁾. The device structure is similar to that of the vertical MOSFET except for an additional emitter which brings about a low onstate voltage. A drawback of the IGT is latch-up phenomenon inherent to the device structure.

This report presents another bipolar-MOS integrated device MGT, which is free from latchup phenomenon.

2. DEVICE STRUCTURE

The MGT (MOS-Gated Transistor) is an integrated device which consists of one bipolar

transistor and two MOSFET's. The equivalent circuit of the MGT is shown in Fig. 1(a)(5). The output stage is the BJT Q0. The MOSFET's Q1 and Q_2 serve for the driver of the BJT Q_0 . They turn on alternately, according to their gate voltage signals as shown in Fig. 1(b). The MOSFET Q1 supplies the base current for Q0 in order to turn on and keep on-state. On the other hand, the MOSFET Q2 provides low resistance by-pass between the emitter and the base of Q0 during the turnoff period T2. By turning-on of Q2, turning-off action of Q_0 will be accelerated as a result of shunting a part of the output current through the by-pass Q2. Besides, blocking voltage of the MGT becomes equal to the collector-base breakdown voltage BVCBO of Q0, not to the collector-emitter breakdown voltage BV_{CEO} . This allows thiner base width than that of the conventional BJT for the same blocking voltage. Consequently, the MGT can be expected to have a low on-state voltage, a faster switching speed than the BJT, and a high input impedance equal to the MOSFET.

The structure of a unit MGT is shown in Fig. 2. As can be seen in this Fig. 2, the MGT contains no parasitic thyristor. Actual device consists of as many units as required from current specification and termination area. The features of this structure are as follows:

(1) The MOSFET Q_2 is arranged next to Q_0 so that

the n^+ emitter of Q_0 serves also for its source in order to save chip area.

(2) The MOSFET Q_2 is layed out along the periphery of the emitter stripe of the Q_0 in order to avoid current localization during turn-off period.

3. EXPERIMENT

Samples of the unit MGT were prepared by using the fabrication prosesses similar to those of the standard vertical DSA MOSFET. The active area of the devices is 0.038 mm², not including edge termination area. Blocking voltage of the samples was designed for 400 V. The gate threshold voltage of the samples was about 2V, both for the MOSFET's Q_1 and Q_2 . A typical output characteristics of the MGT is shown in Fig. 3. The gate voltage of about 10V is required for higher current. Current capability of the MGT will be determined by the base current supplied by Q1 and the current amplification factor h_{FE} of the BJT Q₀. The drivability of Q₁ depends on the area ratio of Q1 to Q0, while the hFE can be controlled by the doping level of the base layer of Q0. In order to determine the best range of device factors, samples of the unit MGT with various Q_1/Q_0 area ratio and base acceptor doping were fabricated. Fig. 4 shows the relation between the Q_1/Q_0 area ratio and the current density of those samples measured at collector-emitter voltage of 2V. It can be seen that the current density reaches maximum for the Q_1/Q_0 area ratio of about 0.4, regardless of the base dose. Considering the effect of base dose to turn-off time, the Q1/Q0 area ratio of 0.4 and base dose of $8x10^{13}$ cm⁻² were adopted for the samples mentioned below. A forward conduction characteristics of the MGT is shown in Fig. 5. At room temperature, current density of the MGT is 90 A/cm² for forward voltage drop of 2V. This current density is about 3 times higher than that of the MOSFET and comparable to that of the BJT designed for the same blocking voltage.

Switching characteristics of the sample MGT's were measured with a resistive load. Fig. 6 shows temperature dependence of the turn-on times of the MGT. The turn-on time t_{on} of the sample was less than 0.3 μ s at temperature range

of $25 \sim 150^{\circ}$ C. Fig. 7 shows typical waveforms of the sample MGT with and without driving Q₂. The turn-off time t_{off} of the MGT with Q₂ driving is 0.3 µs, whereas that without Q₂ driving is 1.5 µs. This shows clearly that Q₂ is effective to speed up turn-off action of the device. The temperature dependence of turn-off times of the MGT is shown in Fig. 8. Turn-off time t_{off} of the MGT was less than 0.8 µs even at 150°C.

4. CONCLUSION

A new MOS-gate transistor MGT which integrates one bipolar transistor for the output stage and two MOSFET's for the driver on a wafer was proposed. Basic silicon characteristics of the MGT have been revealed by experimental studies using the unit MGT with blocking voltage of 400V. It has been confirmed that the MGT has characteristics of a high current density equal to the BJT and a shorter turn-off time than the BJT designed for the same This characteristics are blocking voltage. brought about by turning-on the MOSFET Q2 connected between the emitter and the base of the BJT Q0 during the turn-off period. The MGT can be used for an output stage in power IC's as well as for a discrete power switch.

5. ACKNOWLEDGEMENTS

The authors wish to thank Messrs. S. Sakamoto, K. Nagata, K. miyata and T. Yatsuo for their useful discussions. They also wish to thank Drs. T. Takasuna and Y. Kawamoto for their encouragement through this work.

6. REFERENCES

- M.F.Chang, G.C.Pifer, "25 Amp, 500 Volt Insulated Gate Transistors", Technical Digest, 1983 IEEE IEDM, pp.83-86.
- (2) A.M.Goodman, et al, "Improved COMFETs with Fast Switching Speed and High-Current Capability", Technical Digest, 1983 IEEE IEDM, pp.79-82.
- (3) A.Nakagawa, et al, "High Voltage Bipolar-Mode MOSFET with High Current Capability", Extended Abstracts of the 16th Conf. on Solid State Devices and Materials, Kobe, 1984, pp.309-312.

 H.Yilmaz, et al, "Insulated Gate transistor Modeling and Optimization", Technical Digest, 1984 IEEE IEDM, pp.274-277.

- Fig.1 Equivalent circuit and operational time sequence of an MGT.
 - (a) Equivalent circuit.
 - (b) Time sequence.

Fig.3 Static output characteristics of an MGT.

(5) M.S.Adler, et al, "The Evolution of Power Device Technology", IEEE Trans. Electron Devices, vol.ED-31, No.11, pp.1570-1590, Nov. 1984.

Fig.2 Structure of a unit MGT. (a) Top view. (b) Cross section of the MOSFET Q_1 . (c) Cross section of the BJT Q_0 and MOSFET Q_2 .

Fig.4 Conduction current density vs area ratio of Q_1 to Q_0 . Gate voltage of the Q_1 is 10 V.

Fig.5 Forward conduction characteristics of an MGT with a blocking voltage of 400 V. Gate voltage of the Q₁ is 10 V.

