Extended Abstracts of the 17th Conference on Solid State Devices and Materials, Tokyo, 1985, pp. 267-270

# TDDB Measurements of SiO<sub>2</sub> Gate and SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> Gate Structure

J.Mitsuhashi, K.Sugimoto, M.Hirayama, S.Sadahiro and T.Matsukawa

LSI R&D Lab. Mitsubishi Electric Corporation

4-1 Mizuhara, Itami, Hyogo 664 Japan

 ${\rm Si0}_2/{\rm Si3}{\rm N}_4/{\rm Si0}_2$  stacked gates and  ${\rm Si0}_2$  gates are investigated using TDDB measurements. Top<sup>2</sup> Si0<sub>2</sub> layer reduces an electron trapping in the stacked gate and improves intrinsic breakdown properties. The intrinsic breakdown properties of the stacked gate are determined by the Si0<sub>2</sub> layer. And, Si<sub>3</sub>N<sub>4</sub> layers have reduced random failure of TDDB characteristics which occurs by the weak spots dotted homogeneously following Poisson's distribution in bottom Si0<sub>2</sub> layers. This stacked structure gate is considered to be very efficient to obtain high<sup>2</sup> reliable gates for VLSIs.

## \$1. Introduction

One of the important problems in Dynamic RAMs and EEPROMs is the reduction of reliability of thin gate insulators due to increased electric fields by scaling down. As the gate insulators have become thinner, pin hole density is also increasing.  $^{1)}$  In these situations, an application of  $Si_3N_4$  with high dielectric constant can be considered for the gate insulator. As a most promising structure for these devices. SiO<sub>2</sub> (top)/Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> (bottom) stacked gate structure has been studied.  $^{2,3)}$  There are few reports, however, on the reliability of this structure.4)

This paper describes the reliability aspects of the  $\rm SiO_2/Si_3N_4/SiO_2$  stacked gate and  $\rm SiO_2$  gate under high electric stress fields using TDDB(Time-Dependent Dielectric Breakdown) measurement.

## §2. Specimen and Experimental Techniques

The devices measured were MIS capacitors fabricated on (100) p- or n-type C-Z Si-substrate with impurity concentrations of  $2-6 \times 10^{15}$ atoms/cm<sup>3</sup>. The gate oxide layers , 7.0-17.7 nm thick, were thermally grown in dry  $0_2$ /HCl at 900°C. Si<sub>3</sub>N<sub>4</sub> films were deposited on the oxides by LPCVD to fabricate the stacked gate. The surfaces of Si<sub>3</sub>N<sub>4</sub> layers were oxidized at 900°C in dry  $0_2$ ambient. Thicknesses of these stacked gates were 1.5/9.9-16/7-17.7 nm. The MIS capacitor areas were 0.12-0.98 mm<sup>2</sup>. The oxide-equivalent gate thickness(T<sub>g</sub>) is defined by T<sub>g</sub>=(T<sub>oxt</sub>+ T<sub>sin</sub> x  $\varepsilon_{sio}/$  $\varepsilon_{sin}$  +T<sub>oxb</sub>), where T<sub>oxt</sub>, T<sub>sin</sub> and T<sub>oxb</sub> are the

thickness of the top oxide, nitride and bottom oxide, and  $\varepsilon_{sio}$  and  $\varepsilon_{sin}$  represent the dielectric constant of  $SiO_2$  and  $Si_3N_4$ , respectively. TDDB characteristics were measured by applying the constant voltage to the MIS capacitors. The voltage was applied to get the accumulation mode of capacitors, and electric stress field  $(E_g)$ through the gate insulator was calculated using  $T_{g}$ and capacitance measured in accumulation mode. The flat band voltage shift ( $\Delta V_{FR}$ ) was also measured by C-V mater of 100 KHz. Time-zero dielectric breakdown characteristics were investigated by applying step voltage increasing with a constant rate.

## §3. Results

The TDDB measurement is one of the most suitable methods for evaluating the dielectric layers, because this measurement can directly estimate its reliability.



Fig.1 Cross-sectional micrograph of the  $SiO_2/Si_3N_4/SiO_2$  stacked gate.

A cross-sectional TEM microphotograph of the  $SiO_2/Si_3N_4/SiO_2$  gate is shown in Fig.1. From this photograph, thickness of each layer can be measured and it is found that the asperity of  $Si_3N_4$  layer is reduced to  $\pm 1.5$  nm by re-oxidation process.

## 3-1. Gate Current

Fig.2 shows the I-E characteristics of the stacked gate and  $SiO_2$  gate. Solid lines and broken lines represent the results of the stacked gate and  $SiO_2$  gate, respectively. This I-E characteristics of the stacked gate depend upon a



Fig.2 Gate current and Electric field characteristics. The current under positive gate bias follows F-N mechanism and that under negative bias follows P-F mechanism.

polarity of gate bias. In the case of positive gate bias, the curve is almost consist with that of the SiO<sub>2</sub> gate. But for the negative bias, the curve shows less dependence upon the electric field. Thus the gate current under the negative gate bias is much less than that under the positive bias for even the same electric field over about 5 MV/cm. Judging from Fowler-Nordheim (F-N) plot and Pool-Frenkel (P-F) plot of both curves, conduction mechanism through the stacked gate is F-N current under the positive gate bias and P-F current under the negative gate bias.

### 3-2. TDDB Characteristics

The TDDB characteristics are shown in Fig.3 for three types of the gate structure under  $E_g$  of -9 MV/cm using p-type substrate. The broken line represents a result of the SiO<sub>2</sub> gate and solid line is that of the stacked gate. Median Time to



Fig.3 TDDB characteristics of the SiO<sub>2</sub> gate (16 nm),  $Si_3N_4/SiO_2$  gate and  $SiO_2/Si_3N_4/SiO_2$  stacked gate (1.5/11/9.4 nm). (p-type sub)

Failure (MTF) for the  $SiO_2$  gate is longer than  $10^5$  sec. On the other hand, MTF value for the  $Si_3N_4/SiO_2$  double layer gate is about  $10^3$  sec. But, by re-oxidizing this gate structure, MTF value becomes about two order of magnitude longer and is almost the same as that of the  $SiO_2$  gate. TDDB data at the higher temperature show this tendency more clearly. Therefore, the intrinsic breakdown phenomenon of the stacked gate capacitor is found to be determined by the  $SiO_2$  gate layer. Also, it must be noted that the stacked gate has no random failure until its intrinsic breakdown.

An activation energy  $(\Delta E_a)$  of this breakdown phenomenon is measured as  $\Delta E_a=0.38 \text{ eV}$  for the SiO<sub>2</sub> gate and 0.31 eV for the stacked gate. Both values are almost the same, and it predicts that the intrinsic breakdown of the stacked gate occurs through the same mechanism as that of the SiO<sub>2</sub>



Fig.4 Gate insulator thickness dependence of the critical number of injected electrons which cause the intrinsic breakdown.



Fig.5 Relationship between  $\Delta V_{FB}$  and the aging time. The thickness of SiO<sub>2</sub> and stacked gates are 17.7 nm and (1.5/)II/17.7 nm.

gate. The intrinsic breakdown occurs when the number of injected electrons reaches the critical value ( $N_c$ ). This  $N_c$  value depends upon the thickness of gate layer  $T_g$  as shown in Fig.4. The value of  $N_c$  increases with decreasing  $T_g$ . This is considered to be concerned with the electron trapping in the gate layer.<sup>6</sup>)

The relationship between  $\Delta V_{\rm FB}$  and the aging time is shown in Fig.5 for three types of the gate structure on the p-type substrate. Under this aging stress condition of  $E_g$ =-8 MV/cm, the SiO<sub>2</sub> gate shows no remarkable  $V_{FB}$  shift until 10<sup>3</sup>sec. The stacked gate shows a positive  $V_{\rm FB}$  shift and the trapping efficiency of electrons is different among two structures of stacked gates. The top SiO<sub>2</sub> layer is efficient for reducing the electron trapping at the interface between the bottom SiO2 and Si<sub>3</sub>N<sub>4</sub> layer. The results for the MIS capacitor on n-type substrate are similar to those



Fig.6 Weibull plot of TDDB data for the SiO<sub>2</sub> gate (17.7 nm) under the low stress field of 7 MV/cm. The gate area S<sub>g</sub> is a parameter.

obtained for p-type substrate. The  $V_{FB}$  shift is negative and very small under  $|E_g|$  of 5 MV/cm.

# 3-3. Random Failure Characteristics

As shown in Fig.3, the SiO<sub>2</sub> gate shows random failure until it reaches the intrinsic breakdown. This failure is seemed to be caused by the weak spots in the SiO<sub>2</sub> layer, considering a capacitor area dependence of the failure rate. Fig.6 shows a Weibull plot of a random failure for the SiO2 gate under relatively low Eg of 7 MV/cm. The cumulative failure increases following Weibull distribution for each samples with three different (Sg). Fig.7 clears a gate area gate area dependence of the cumulative failure in terms of Weibull parameter t<sub>o</sub> . A linear line on this figure shows that these data points satisfy the following equations,

$$(t)=1-\exp(-t^{0.18}/t_0)$$
  
=1-exp(-a(t)x S<sub>g</sub>)

F

,where F(t) is cumulative failure rate, and a(t) denots the surface density of the weak spots. Then, the weak spots in the SiO<sub>2</sub> layer are considered to be distributed homogeneously following Poisson's distribution.

# 3-4. Effects of Si3N4 Layer for TDDB

The TDDB characteristics of the stacked gate and  $Si_3N_4$  gate on the n-type substrate under E<sub>g</sub> of 9 MV/cm is shown in Fig.8. Although the MTF value of intrinsic breakdown becomes shorter than that shown in Fig.3 because of applying the positive



Fig.7 Relationship between Weibull parameter  $t_0$  and the gate area S<sub>g</sub> which is calculated from the data in Fig.6.



Fig.8 TDDB characteristics of the  $Si_3N_4$  gate and  $Si0_2/Si_3N_4/Si0_2$  stacked gate with the different thickness of  $Si_3N_4$  layer. (n-type sub)

gate bias, the same characteristics as those of p-type substrate is shown here. In this case, the different results are obtained in regard to the thickness ratio of Si3N4/SiO2. The sample with the ratio of 16/7 nm (filled circles in the failure in this no random figure) shows experiment, while the sample of 9.9/10 nm (open circles) shows random failure like the SiO2 gate. The TDDB characteristics of Si3N4 layer with the thickness of 9.9 and 16 nm are shown in the same For the 16 nm-thickness layer, MTF value figure. of 5x10<sup>2</sup> sec is obtained, but for the 9.9 nm thickness, MTF value becomes about three orders of



Fig.9 Time-zero dielectric breakdown characteristics of the  $SiO_2$  and  $SiO_2/Si_2N_4/SiO_2$  stacked gate.

magnitude shorter. This result shows that the weak spots in the  $SiO_2$  layer are covered by  $Si_3N_4$  layer. This covering effect was more remarkable at higher temperatures.

Time-zero dielectric breakdown characteristics are shown in Fig.9 for the stacked gate (1.5/10/10nm) and the SiO<sub>2</sub> gate ( 16 nm ) on the n-type substrate. Both curves show the same intrinsic breakdown voltage. For lower voltage than this, cumulative failure is proportional to the electric field and the stacked gate shows lower failure rate than the SiO<sub>2</sub> gate. These correspond with the results of TDDB measurement mentioned above.

## §4. Summary

The SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> stacked gate and SiO<sub>2</sub> gate are investigated using TDDB measurements. The stacked gate has two different conduction mechanisms according to the gate bias polarity. For both conduction, the Si3N4 layer prevent the of TDDB characteristics from failure random re-oxidized Si02 occurring. The top layer improves the intrinsic breakdown properties by reducing the electron trapping at the interface between Si<sub>3</sub>N<sub>4</sub> and SiO<sub>2</sub> layer. The intrinsic breakdown properties are, however, determined by the SiO<sub>2</sub> layer.

Therefore, this stacked gate structure is considered to be efficient to obtain high reliable gates.

#### §5. Acknowledgments

The authors would like to express thier thanks to Dr.H.Oka and Dr. H.Nakata for their encouragements.

#### \$6. References

1)Y.Han et al.; IEDM Technical Digest, (1982) pp.98.

- 2)T.Kaga,T.Kusaka,Y.Yatsuda and K.Mukai ; the 16th Conf. on Solid State Dev. and Mate.,(1984)pp.95.
- 3)T.Ito, T.Nakamura and H.Ishikawa; IEEE Trans. Elect. Dev., ED-29 (1982) 498.
- 4)T.Watanabe, A.Menjoh, M.Ishikawa and J.Kumagai ; IEDM Technical Digest, (1984) pp.173.
- 5)M.Hirayama, T.Matsukawa, N.Tsubouchi and H.Nakata; Proc. of 1984 Int' Rel. Phys. Symp., pp. 146.
- 6)S.K.Lai, J.Lee and V.K.Dham; IEDM Technical Digest, (1983) pp.190.