Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo, 1986, pp. 257-260

# Thermodynamical Approach to a New High Dielectric Capacitor Structure: W/HfO2/W

KEISAKU YAMADA VLSI Research Center Toshiba Corporation,Kawasaki,Japan

The combination of materials for a high dielectric capacitor structure and its fabrication process were established based on thermodynamic theory. The new capacitor structure,  $W/HfO_2/W$ , has been obtained by oxidizing the W/Hf/W stacked structure in  $H_2/H_2O$  ambients. The leakage current level for this capacitor,  $W/HfO_2/W$ , was one of the lowest reported so far for other high dielectric films. The dielectric constant for  $HfO_2$  films was about 25.

# 1. Introduction

In recent years, high dielectric films have become interesting for use as storage capacitor dielectrics in MOS dynamic memories. Tantalum pentoxide(Ta<sub>2</sub>0<sub>5</sub>) films have been intensively studied among various high dielectric materials. Ta205 films on Si, however, exhibit very high leakage current, due to oxygen vacancies in the film, according to the author's interpretation. This will be discussed in this paper based on thermodynamic theory. Using this thermodynamic approach, integration of Hf02 thin films was studied into a new capacitor-structure, W/HfO2/W. Hf02 films were chosen because of its relatively high dielectric constant and small free energy of formation. W films were chosen as the electrode material, because W oxides have reletively large free energy.

# 2. Thermodynamics of dielectric films

The leakage current in transition metal oxide increases monotonically with the oxygen vacancy concentration,  $C_{V^*}$  Because the oxide phase is in contact with the metal phase in the phase diagram of metal-oxygen system, the components of these phases dissolve in each other. Therefore, transition metal oxides always include some amount of metal.

The concentration of metal in its oxide phase,  $C_M$  is in proportion to  $C_V$  with the

coordination number.  $C_{M}$  in an oxide,  $M_{\chi}O_{\gamma}$  is ;

$$\Delta G = -RTLn^{a}M_{x}O_{y}/\gamma_{M}C_{M}(P_{O_{z}})$$
(1)

where  $\Delta G$  is the free energy of formation,  $a_{M_{\boldsymbol{\chi}}}{}_{0_{\boldsymbol{\chi}}}$  is the activity of component  $M_{\chi}O_{\chi}$  and is approximately 1,  $\mathcal{F}_{M}$  is the activity coefficient of metal in  $M_X O_Y$ ,  $P_{O_2}$  is the chemical potential of oxygen, which is shown by its partial pressure. For choices of low leakage materials and a capacitor structure, various suggestions can be derived from Eq.(1). Small  $\triangle G$  and large  $P_{O_2}$  will result in a low  $C_M$  or  $C_V$ . The value of  $\triangle G$  dependes on the choice of the dielectric film material, because △G is a specific property of a material. Among various dielectric materials, HfO2 has the smallest AG. In order to keep the electrode material unoxidized, the maximum value of  $P_{0}$  in a dielectric film is limited by the element used for the upper and lower electrodes of the capacitor structure. This value may be calculated from the oxidation free energy change of the electrode material. For example, in case of Si or W electrodes, the maximum value of Po, for Si and W at 700 °C are  $10^{-36}$  and  $10^{-19}$  atmosphere, respectively. In a higher  $P_{0_2}$  region than the above Po,, electrode materials change to SiO2 and WO3.

 $HfO_2$ , which has a small formation energy, was chosen as the dielectric material, and W, whose oxide has large  $P_{O_2}$ , was chosen as the electrode material, based on the above discussion. Figuer 1 shows  $P_{0_2}$  diagrams for Si/Ta<sub>2</sub>0<sub>5</sub>/Si and W/Hf0<sub>2</sub>/W capacitor structure at 700°C. In a lower  $P_{0_2}=10^{-33}$  atmosphere, which is shown in Fig.1, Ta<sub>2</sub>0<sub>5</sub> can not exist without oxidation of Si electrode. In other words, Ta<sub>2</sub>0<sub>5</sub>, having this structure, includes many oxygen vacancies due to reduction of Ta<sub>2</sub>0<sub>5</sub> by Si. On the other hand, for the W/Hf0<sub>2</sub>/W structure, which is the auther's choice, Hf0<sub>2</sub> is not only stable but also having low concentration of oxygen vacancy, if it was annealed in an ambient having a near 10<sup>-19</sup> oxygen partial pressure.



Fig.1 P<sub>O2</sub> diagrams for Si/Ta<sub>2</sub>O<sub>5</sub>/Si and W/HfO<sub>2</sub>/W capacitor structures at 700 °C.

The dependence of leakage current on  $P_{0_2}$  can be explained based on the relationship between  $P_{0_2}$ and  $C_V$  calculated by statistical thermodynamics<sup>3)</sup> for a hafnium-oxygen-vacancy ternary system. The free energy of a HfO<sub>2</sub> crystal,  $F_s$  is ;

 $Fs = -kT \log Zn$  (2)

where Zn is determined by ;

$$Zn = K(T) \frac{N!}{(N-Nh)!Nh!} \frac{N!}{(2Nh)!(N-2Nh)!}$$

$$\cdot exp(-\frac{Nh}{kT}\omega) [q_o(T)]^{Nh}$$
(3)

where K(T) is the partition function of the complete crystal, N is the number of oxygen lattice site,  $N_h$  is the number of oxygen vacancy,  $\omega$  is the energy for making one of oxygen vacancy, and  $[q_o(T)]^{Nh}$  is the oscilational partition function of the excess  $N_h$  atoms. Oxygen in the gas phase and HfO<sub>2</sub> phase is in the equilibrium. When the free energy of oxygen in the gas phase is expressed by  $F_g$ , and the number of oxygen atoms by  $n_{O_2}$ , the equilibrium relations are;

$$\frac{\partial Fs}{\partial Nh} = -\frac{1}{2} \frac{Fg}{n_{0_2}}$$
(4)

$$P_{0_2} = \exp\left(\frac{1}{kT} \frac{\partial Fg}{\partial n_{o_2}}\right)$$
 (5)

The vacancy concentration is

$$x = \frac{Nh}{N}$$
 (6)

Combining Eqs.(3),(4) and (5), $(P_{0_2})^{1/2}$  is;

$$(P_{0_2})^{\frac{1}{2}} = \frac{4x^3}{(1-x)(1-2x)^2} q_0(T) exp(\frac{\omega}{kT})$$
(7)

In the  $H_2O-H_2-O_2$  system,  $P_{O_2}$  is proportinal to  $P_{H_2O}/P_{H_2}$  and Eq.(7) is rewriten as ;

$$(P_{H_2}/P_{H_20})^{\frac{1}{2}} = \frac{Cx^3}{(1-x)(1-2x)^2}$$
 (8)

where C is a constant.

Let us assume that trap density in the Poole-Frenkel theory is related to vacancy concentration. When x<<1, P-F current, J<sub>PF</sub> is ;

$$\log(J_{PF}/E(P_{H_{2}}/P_{H_{2}}0)^{\frac{1}{6}}) = \frac{-q\phi_{r} + \beta_{PF}\sqrt{E}}{kT}$$
(9)

It should be noted that Eq.(1), based on chemical thermodynamics and Eq.(2), based on statistical thermodynamics, have the same significance. The  $HfO_2$  and W combination has the smallest  $J_{\rm PF}$ , so that this electrode and capacitor material system is the best choice for use as a high dielectric capacitor in VLSI's.

#### 3. Experimental

Figure 2 shows the W/HfO2/W capacitor process flow. A thin W film (~50nm), which is the lower electrode, was deposited by the electron-beamevapolation method. This W film was patterned and etched by a C.D.E. (Chemical Dry Etching) system, using CF, and O2 gases. SiO2 film, 200nm thick, were deposited on the W and Si surfaces in an RF magnetron sputtering apparatus, in which the SiO2 target was installed. The capacitor areas were formed by etching in a dilute HF solution. Then, pure Hf film (about 30nm) were fabricated using an E-gun system. Following Hf deposition, W films(70nm), for the upper electrodes, were deposited in the same apparatus without exposing the Hf film to air. With this deposition system, it is possible to clean the surface by magnetron



Fig.2 W/HfO2/W capacitor process flow.

sputtering in pure Ar. In this work, the substrates were cleaned by Ar sputtering before Hf deposition. The deposition chamber in the presently used apparatus had  $3x10^{-8}$  Pa base pressure and  $4x10^{-7}$  Pa during the deposition. The requirement for clean vacuum has not been confirmed for the present work.

The next step is the oxidation of hafnium. Hafnium is a very active element and oxidizes violently. However, oxidation through the W films in the present process is very well controlled. The chemical potential for oxygen,  $P_{0_2}$ , in oxidation ambients, were controlled by  $H_2/H_2O$ flow. In this process, Hf oxidation is composed of a two step treatment at 450°C and 700°C.

The leakage current, due to oxygen vacancy, of  $W/HfO_2/W$  capacitors, is mainly determined by  $P_{O_2}$  during the final annealing at 700°C. Hafnium oxide grows in the first step annealing in  $H_2/H_2O$  flow. The 2nd step annealing was performed for oxidizing the Hf-oxide film completely and reducing the vacancy concentration. The first step temperature, 450°C, was chosen based on the condition giving a larger oxidation rate and slow alloying rate between W and Hf.

The 2nd step temperature was 700°C, which is the highest temperature possible without silicidation between the Si substrate and the lower electrode, W. The chemical structures of  $W/Hf0_2/W$  capacitors, which were annealed at 700°C and 800°C, are demonstrated in Fig.3. In the case of 800°C, the silicidation reaction at the interface between W and Si was observed.

At the last step, the upper W electrodes were formed by photolithography and C.D.E.. This process is easy, because the HfO<sub>2</sub> film can not be etched by C.D.E..



structure. Samples annealed at 700 °C and 800 °C.

4. Results and Discussion

The dielectric constant for the  $HfO_2$  film, obtained in this work, was about 25. Therefore a  $HfO_2$  film 50nm thick corresponds to a SiO<sub>2</sub> film as thin as 7.8nm.

Figure 4 shows a typical leakage current characteristic at room temperature( $25^{\circ}$ C). The capacitor area shown in Fig.4 was  $1 \times 10^{-4}$  cm<sup>2</sup> ( $100 \times 100 \mu$ m<sup>2</sup>). The leakage current level for this capacitor was one of the lowest as reported so far for other high dielectric films. This low leakage capacitor could hardly be obtained if the capacitor area as larger than  $100 \times 100 \mu$ m<sup>2</sup>. This can



not be to explained by defect dencity. A large volume change, about 5/3 during Hf oxidation, yields a large stress in the film. It is assumed that an increase in leakage current is caused by this stress.

Figure 5 indicates leakage current dependence on measurement temperature for the sample annealed in  $P_{0_2} = 10^{-22}$  atmosphere(A) and  $10^{-33}$  atm.(B) ambients at 700°C. Oxygen partial pressures of  $10^{-22}$  and  $10^{-33}$  atm. were given by the  $H_2/H_20$  flow ratio of 10 and  $4\times10^6$ , respectively. In this work, the  $H_2/H_20$  flow rates were controlled by mixing pure  $H_2$  and wet  $H_2$ , which was saturated with water at room temperature. Figure 5 clearly indicates that, not only the leakage current level, but also its activation energy, depend on  $P_{0_2}$ . The author expects to observe the same leakage current dependence on  $P_{0_2}$  in annealing ambients with other transition metal oxides, such as  $Ta_20_5$ .



Fig.5 Leakage current characteristics for  $W/HfO_2/W$  capacitors.

Table 1 shows the leakage current level at 420°K and annealing ambients which are also shown in Fig.5. Current ratio for samples(A) and (B) are 20. The value of

 $[(P_{H_2}/P_{H_20})_A/(P_{H_2}/P_{H_20})_B]^{1/6}$  is 8.5. The current ratio, 20, agrees fairly well with this, 8.5. However, this discussion is not able to explain the change in activation energy for leakage currents by  $P_{O_2}$  in Fig.5. It indicates that a discussion on change in  $\phi_T$  due to  $P_{O_2}$  in Eq.(9) will be necessary. Then, we can consider

# Table 1. Relation between leakage currents at 420°K. and annealing ambients.

| Sample | Po <sub>2</sub>   | atm. | PH2/PH20          | JPF |   | Α                 |
|--------|-------------------|------|-------------------|-----|---|-------------------|
| (A)    | 10 <sup>-33</sup> |      | $4 \times 10^{6}$ | 2   | × | 10-11             |
| (B)    | 10 <sup>-22</sup> |      | 10                | 1   | × | 10 <sup>-12</sup> |

that the change of  $\varphi_{\rm T}$  is caused by the shift from the ideal configurational partition function for the oxygen vacancy in the HfO<sub>2</sub>, and the maximum shift corresponds to the occurance of grain boundary.

# 5. Conclusion

Materials for a high dielectric capacitor structure,  $W/HfO_2/W$ , were chosen based on thermodynamic theory. The  $W/HfO_2/W$  structure was obtained by oxidizing W/Hf/W in  $H_2/H_2O$  ambient. The leakage currents for these capacitors were dominated by oxygen vacancy, which depended on the oxygen partial pressures for the annealing ambients. In this optimized process, capacitors were obtained having the leakage current,  $1x10^{-9}A/cm^2$  at 1MV/cm. The dielectric constant for the  $HfO_2$  film was about 25. Thus, sufficient capacitance for future DRAM memory cells can be obtained, even in small geometries for them. Thus a new memory capacitor technology for ultra high density DRAM's has been established.

### References

- C.Hashimoto and H.Oikawa : Extend Abstracts of 17th Conf. Solid State Devices and Materials, Tokyo, p275, 1985.
- P.L.Young, F.P.Fehlner, and A.J.Whiteman : J. Vac. Sci. Tech., Vol.14, p174, 1977.
- S.Takeuchi and K.Igaki : J. Japan Inst. Metals B14, p28, 1950.
- 4) J.Shappik, A.Anis, and I.Pinsky : IEEE Trans. Electron Devices, Vol. ED-33, No.4, p442, 1986.