Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo, 1986, pp. 69-72

Invited

Small Geometry Device Physics and Technology

Chihiro Hamaguchi, Arata Hasegawa and Masayoshi Shirahata Department of Electronic Engineering, Faculty of Engineering Osaka University, Suita City, Osaka 565, Japan

High field transport of small geometry devices is reviewed placing main emphasis on the drift velocity overshoot effect and device simulation techniques. Monte Carlo simulation was used to investigate the overshoot effect. Experimental results of the overshoot are reviewed. Device simulation techniques for MOSFETs and MESFETs are briefly reviewed. Monte Carlo simulation of quantized two-dimensional electrons in Si inversion layers and in quantum well structures is also reported. Monte Carlo simulation shows that the drift velocity overshoot is very large in HEMT.

§1. Introduction

VLSI technology has made a remarkable progress in recent years and MOSFETs processed in the region of submicron rule are available. When the size of semiconductor devices is reduced in the region of submicrons and the mean free path of the carriers becomes comparable with the device size, new effects are expected, such as drift velocity overshoot, ballistic transport and quantum size effect.¹ In view of device technology, these effects are very attractive because of improvement of the high speed operation and of possibility to fabricate new devices based on mechanisms different from existing devices. In this paper we deal with hot electron effects in very small devices placing main emphasis on drift velocity overshoot.

§2. Drift Velocity Overshoot in GaAs

Drift velocity overshoot has been investigated by the following methods.

- (a) Monte Carlo simulation²
- (b) quantum transport equation³
- (c) kinetic equation with a temperature model $\frac{4-6}{7}$
- (d) Boltzmann equation

All the results indicate drift velocity overshoot at high electric fields. Among the methods Monte Carlo simulation is. the most conventional and gives a detailed picture of the electron transient. In this paper we report some important results of the drift velocity overshoot effect obtained by Monte Carlo simulation, where we deal with the screening of the polar phonon field by electrons and electron-electron scattering.

In the present analysis we are interested in GaAs and thus we used the parameters of Littlejohn et al.,⁸ but we took into account anisotropy of the upper valleys, four L-valleys with $m_t=0.082m$ and $m_1=1.58m$ and six X-valleys with $m_t=0.19m$ and $m_1=0.98m$.

It is well known that the field induced by long wavelength polar optical phonons is screened by free electrons.¹ The screening reduces the polar optical phonon scattering and increases the intervalley transfer of hot electrons from the valley to the higher valleys. Figure 1 shows time evolution of the drift velocities in Γ , L and X valleys and average drift velocity with (solid curve) and without screening (dashed curve) for n = $1X10^{17}$ cm⁻³, T = 300K and E = 10kV/cm. Note that overshoot velocity is about $5X10^7$ cm/s at t = 0.5ps.

From Monte Carlo simulation we found a quite anisotropic distribution of electrons in the region where the electron drift velocity exhibits overshoot.¹ In Fig. 2 the time evolution of the electron drift velocity is plotted for the case with (solid curve) and without electron-electron scattering (dashed curve) at E = 10 kV/cm for n= $1 \text{X10}^{17} \text{cm}^{-3}$. It is found in Fig. 2 that e-e scattering affects the drift velocity in the overshoot region, but the effect is quite weak for the steady state value because of the increase in the electron temperature.

§3. Experiments on Drift Velocity Overshoot

It is very difficult to observe drift velocity overshoot because of the fact that it occurs only for a very short time interval and in a very narrow region near the cathode or in a very short sample. This is the reason why a quantitative result has not yet been reported on the effect. Here we will summarize the experimental methods and the results on the overshoot effect;

- (a) electro-absorption⁹
- (b) laser impulse response of high speed GaAs photodetector 10
- (c) infrared absorption measurement and Fourier transform analysis¹¹
- (d) measurements and analysis of current-voltage characteristics^{1,12}
- (e) measurements of FET characteristics and their analysis. $^{13}\,$

The methods (a) and (b) are "time resolved" and reveal an existence of overshoot. The method (c) is to obtain time dependence of the conductivity Fourier transform of frequency dependent by conductivity and shows overshoot of conductivity in Si. The methods (d) and (e) are based on the analysis of the steady state current-voltage characteristics assuming a drift velocity field curve which gives the maximum drift velocity in the specimens. The methods (a) to (c) do not taken into account the field distribution but time evolution is obtained. The methods (d) and (e). on the other hand, takes into account the nonuniform field distribution in a very short devices but time evolution is not resolved. Our results n-GaAs are shown in Fig. 3, where on the normalized donors n, electron density n, potential u, and drift velocity $\boldsymbol{v}_{d}^{}$ for eV/kT=75 are plotted as a function of normalized distance for n n n structure, where we find maximum drift velocity 3X10⁷ cm/s.

§4. Device Simulation

Modeling of semiconductor devices is made by the following approaches;

(A) Two-dimensional device simulation

- (B) Solve kinetic equations using a temperature model
- (C) Many particle Monte Carlo simulation.

Two-dimensional device simulator is shown to work in MOSFET with submicron channel length. The method is based on numerical analysis of Poisson and current continuity equations with a proper assumption for the drift velocity-field relation. The following formulae are usually adopted.

(a) Scharfetter-Gummel's formula¹⁴

$$v_{d} = \mu_{o} E / [1 + \frac{N}{N/S + N_{r}} + \frac{(E/A)^{2}}{E/A + F} + (\frac{E}{B})^{2}]^{1/2}$$

(b) Modification of Scharfetter-Gummel's formula¹⁵

$$v_{d} = \mu(N, E_{G}) E_{D} [1 + (\frac{\mu(N, E_{G}) E_{D}}{v_{c}})^{2} (\frac{\mu(N, E_{G}) E_{D}}{v_{c}} + (\frac{\mu(N, E_{G}) E_{D}}{v_{s}})^{2}]^{-1/2}$$

(c) Thornber's formula¹⁶

$$\mathbf{v}_{d} = \mu(\mathbf{E}_{G}) \mathbf{E}_{D} / [1 + \{\mu(\mathbf{E}_{G}) \mathbf{E}_{D} / \mathbf{v}_{s}(\mathbf{E}_{G})\}^{\beta}]^{1/\beta}$$

(d) Schwarz-Russek's formula¹⁷

$$v_{d} = \frac{v}{\sqrt{2}} \{-1 + [1 + (\frac{2\mu_{o}E}{v}[1 + \exp(\frac{-E_{op}}{m})])^{2}]^{1/2}\}^{1/2}$$

(e) Cooper-Nelson's formula¹⁸

$$v_{d} = \mu E_{t} / [1 + (\mu E_{t} / v_{s})^{\alpha}]^{1/\alpha}, \ \mu = \mu_{o} / [1 + (\frac{E_{n}}{E_{c}})^{c}]$$

The simplest one is Thornber's formula and usually $\beta=2$ is used. Cooper-Nelson's formula is the same as the Thornber's and the validity of the formula was proved by the time of flight measurement of electrons and holes in MOS inversion layers. Scharfetter-Gummel's formula takes into account the effect of impurity scattering (N), and Yamaguchi's formula takes into account the gate field dependence of the mobility. These formulae are valid for carriers in Si MOSFET's, whereas in GaAs we have to take into account negative differential mobility due to the intervalley transfer of electrons to upper valleys.¹² It should be noted that fitting of the I_D vs. V_D curves using these formulae gives the saturation velocity or the maximum drift velocity and thus we

may obtain the overshoot effect as shown in the case of one-dimensional analysis shown in the case of n⁺nn⁺. An example of the device simulation is shown in Fig. 4, where $I_{D} - V_{D}$ curves measured in a short MOSFET with 0.38µm channel length are compared with the curves simulated using Cooper-Nelson's formula. 19 The gate field dependence of the carrier mobility in MOS inversion layers is explained in terms of surface quantization by Schwarz and Russek, ²⁰ Lin, ²¹ and Hamaguchi, ¹ independently, where the electron mobility is shown to depend on the size of spread in the direction normal to the surface. Shirahata and Hamaguchi¹⁹ has shown that Cooper-Nelson's formula is well explained by taking electrons in the lowest two subbands into account as shown in Fig. 5.

The method shown above assumes a uniform temperature distribution. То improve this assumption a temperature model is proposed to solve kinetic equations.^{6,22} This model takes into account the overshoot effect and seems to be more accurate. However, we have to note that such a temperature model assumes Maxwell-Boltzmann distribution function and that the assumption fails in hot electron problem. The most reliable results, therefore, will be obtained by using many particle Monte Carlo simulation as done by Hockney et al,²³ Warriner,²⁴ Pone et al.²⁵ and Yoshii et al.²⁶

§5. Hot Electron Transport in MOS Inversion Layers and in Heterojunction Devices

We reported Monte Carlo simulation of 2D electrons in Si inversion layers, where the subband structure is assumed to be unchanged by the electron repopulation.²⁷ In this paper we present drift velocity vs. electric field curves obtained by Monte Carlo simulation in Si inversion layer, where self-consistent calculation, calculation of scattering probabilities and Monte Carlo simulation are iteratively performed. The results are shown in Fig. 6, where drift velocity is plotted as a function of electric field for normal field 5X10⁴, 1X10⁵ and 5X10⁵ V/cm. These features are very similar to the experimental results of Cooper and Nelson.¹⁸

Monte Carlo simulation of 2D hot electrons in

a HEMT has been reported. 28,29 Here we present our results in HEMT with electron sheet density of 5×10^{11} cm⁻² was carried out and the results are shown in Fig. 7 for transient response of the drift velocity. We found from the present simulations that negative differential mobility appears and the maximum drift velocity is higher than that in a bulk GaAs and overshoot of the drift velocity reaches 8×10^7 cm/s at 77K. We found that the drift velocity in the Γ -valley subbands is about 10^8 cm/s. In the calculations we assumed 2D subbnands are formed in the L-valley of GaAs-well. 30

§ 6. Technological Progress

MOSFETs with channel width of 100nm were fabricated by Skocpol et al.³¹ by electron beam lithography and 1D conduction was observed. Chou et al.¹³ fabricated n-channel MOSFETs with channel length of 75nm in Si using combined x-ray and optical lithographies and observed overshoot effect at 4.2K. Katayama et al.³² observed gigantic oscillations in mobility in n-channel MOSFETs with channel width 150nm and length around 1.5µm using LOCOS structure. Very recently quasi-ID conduction is observed in periodic parallel inversion lines in Si by Warren et al.³³ These investigations will give a breakthrough to a new field of very small semiconductor device physics.

References

C. Hamaguchi: Physica 134B (1985) 87 1) 2) J.G. Ruch: IEEE Trans. ED-19(1972) 652 J.R.Barker and D.K.Ferry:S.S.E. 23('80)519,531 3) 4) J.P. Nougier et al.: J.A.P. 52('81)825 A. Ghis et al.: J.A.P. 54 (1983) 214 R.K. Cook and J. Frey:IEEE Trans.ED-29('83)970 5) 6) J.P.Nougier and M.Rolland: Phys.Rev.B8('73)5728 7) 8) M.A. Littlejohn et al.: J.A.P. 48 ('77) 4587 9) C.V. Shank et al.: Appl. Phys. Lett. 38('81)104 10) R.B. Hammond: Physica 134B (1985) 475 11) S.J. Allen, Jr.: J. Phys. C7 (1981) 369 12) T. Mori et al. J.J.A.P. 23('84)212 13) S.Y.Chou et al.: IEEE EDL-6('85)665 14) D.L.Scharfetter & H.K.Gummel: IEEE ED-16('69)64 15) K.Yamaguchi: IEEE Trans. ED-30('83)658 16) K.K.Thornber: J.A.P. 51('80)2127 17) S.A.Schwarz & S.E.Russek: IEEE ED-30('83)1629 18) J.A.Cooper, Jr. & D.F.Nelson: J.A.P. 54('83)1445 19) M.Shirahata and C.Hamaguchi:JJAP(in the press) 20) S.A.Schwarz & S.E.Russek: IEEE ED-30('83)1634 21) M.-S. Lin: IEEE EDL-5('84)487 22) W.R.Curtice and Y.-H.Yun: IEEE ED-28('81)954 23) R.W.Hockney et al.: Electron.Lett. 10('74)484 24) R.A.Warriner: Solid State Elect. Dev. 1('77)105 25) J.F.Pone et al: IEEE Trans. ED-29('82)1244 26) A. Yoshii et al.: IEEE Trans. ED-30('83)1376

```
27) K.Terashima et al.:Superl.and Microstr.1(85)15
28) M.Tomizawa et al.:IEEE EDL-5('84)464
29) K.Yokoyama and K.Hess:MSS II(Kyoto,'85)533
30) K.Miyatsuji et al.:SSDM ('86)in this volume
31) W.J.Skocpol et al.:Phys. Rev. Lett.49('82)951
32) Y.Katayama et al.:EP2DS (Kyoto,'85)28
33) A.C.Warren et al.:Phys. Rev. Lett.56('86)1858
```


Fig. 1 Time evolution of the drift velocities with (solid curve) and without screening (dashed curve) for n=1X10¹⁷ cm⁻³, T=300K and E=10kV/cm.

Fig. 2 Time evolution of the drift velocities with (solid curve) and without e-e scattering (dashed curve) for $n=1\times10^{17}$ cm⁻³, T=300K and E=10kV/cm.

Fig. 3 Normalized donor density n_0 , normalized potential u, normalized electron density n and drift velocity v_d for eV/k_BT=75 in n⁺n n⁺ G_aA_s.

Fig. 4 I_d-V_d characteristics of very short channel (0.38 $\mu m)$ MOSFET at 300K. Dashed curves represent experimental data and solid curves are calculated by 2D device simulation.

Fig. 5 Electron mobility as a function of (effective) normal field in Si MOS inversion layer. The dashed curve is the experimental data of Cooper and Nelson, and solid curve is calculated by assuming that mobility is limited by 2D electrons in E_o and E_o ' subbands.

Fig. 6 Drift velocity vs. electric field for 2D electrons obtained by Monte Carlo simulation in Si MOS inversion layer for normal field 5×10^4 , 1×10^5 and 5×10^5 V/cm.

